Developers of thread-safe classes struggle with two opposing goals. The class must be correct, which requires synchronizing concurrent accesses, and the class should provide reasonable performance, which is difficult to realize in the presence of unnecessary synchronization. Validating the performance of a thread-safe class is challenging because it requires diverse workloads that use the class, because existing performance analysis techniques focus on individual bottleneck methods, and because reliably measuring the performance of concurrent executions is difficult. This paper presents SpeedGun, an automatic performance regression testing technique for thread-safe classes. The key idea is to generate multi-threaded performance tests and to compare two versions of a class with each other. The analysis notifies developers when changing a thread-safe class significantly influences the performance of clients of this class. An evaluation with 113 pairs of classes from popular Java projects shows that the analysis effectively identifies 13 performance differences, including performance regressions that the respective developers were not aware of.
Publications
Tags
2D
Accelerators
Algorithms
Architectures
Arrays
Big Data
Bootstrapping
C++
Cache Partitioning
Cancer
Careers
Chisel
Communication
Computer Architecture
CTF
DIABLO
Efficiency
Energy
FPGA
GAP
Gaussian Elimination
Genomics
GPU
Hardware
HLS
Lower Bounds
LU
Matrix Multiplication
Memory
Multicore
Oblivious
Open Space
OS
Parallelism
Parallel Reduction
Performance
PHANTOM
Processors
Python
Research Centers
RISC-V
SEJITS
Tall-Skinny QR
Technical Report
Test generation