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Abstract

Recognizing objects in fine-grained domains can be
extremely challenging due to the subtle differences be-
tween subcategories. Discriminative markings are often
highly localized, leading traditional object recognition ap-
proaches to struggle with the large pose variation often
present in these domains. Pose-normalization seeks to align
training exemplars, either piecewise by part or globally
for the whole object, effectively factoring out differences
in pose and in viewing angle. Prior approaches relied
on computationally-expensive filter ensembles for part lo-
calization and required extensive supervision. This pa-
per proposes two pose-normalized descriptors based on
computationally-efficient deformable part models. The
first leverages the semantics inherent in strongly-supervised
DPM parts. The second exploits weak semantic annota-
tions to learn cross-component correspondences, comput-
ing pose-normalized descriptors from the latent parts of
a weakly-supervised DPM. These representations enable
pooling across pose and viewpoint, in turn facilitating tasks
such as fine-grained recognition and attribute prediction.
Experiments conducted on the Caltech-UCSD Birds 200
dataset and Berkeley Human Attribute dataset demonstrate
significant improvements over state-of-art algorithms.

1. Introduction

Despite the many important applications and domains
under investigation, fine-grained recognition remains very
challenging. As described in [23], what often differentiates
basic-level categories is the presence or absence of parts
(e.g. an elephant has 4 legs and a trunk), whereas subor-
dinate categories are more often discriminated by subtle
variations in the shape, size and/or appearance properties
of these parts (e.g. elephant species can be distinguished by
localized cues such as ear shape and size). Localizing and
describing the object’s parts therefore becomes central to
uncovering its fine-grained identity.

Several approaches have been proposed for localizing
and describing object parts in fine-grained domains. Pose-
normalization was proposed for fine-grained recognition by
Farrell et al. [23] and extended in Zhang et al. [47]. This
paradigm seeks to discount variations in pose, articulation
and camera viewing angle by localizing semantic object
parts and extracting appearance features with respect to
those localized parts. In these approaches part localization
was accomplished using Poselets [11, 10], which require
computationally-expensive filter ensembles for part local-
ization as well as extensive supervision.

Parkhi et al. [36, 37] provide an alternate way of de-
tecting basic-level category objects such as dogs and cats
by using a Deformable Part Model [24] trained specifically
on the head. Once a head has been detected in a test im-
age, this region is used to initialize a grab-cut [38] seg-
mentation and obtain a mask/silhouette of the entire ob-
ject. Classification is then performed using a combination
of the head shape and features extracted from within the
head/body mask. While this method is relatively effective
for front-facing cats and dogs, subjects in other domains
(such as birds and people) often exhibit greater variation in
pose and appearance and can be far more difficult to seg-
ment from their surroundings (see examples in Figure 1).

In this work, we introduce deformable part descrip-
tors (DPD), a robust and efficient framework for pose-
normalized description based on DPM parts and demon-
strate its effectiveness for both fine-grained recognition and
attribute prediction (see Figure 2). We propose two de-
formable part descriptors: the DPD-strong leverages the
semantics inherent in strongly-supervised DPM parts; the
DPD-weak exploits semantic annotations to learn cross-
component correspondences, computing pose-normalized
descriptors from weakly-supervised DPM parts. We present
state-of-the-art results in evaluating our approach on stan-
dard fine-grained and domain-specific attribute datasets in-
cluding the Caltech-UCSD birds dataset [13] and Human
Attributes dataset [10]. An end-to-end open-source imple-
mentation of our method has been released with this paper
and is available at http://dpd.berkeleyvision.org.
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Figure 1. Robustness of Deformable Part Descriptors (DPDs).
While they work well for generally homogeneous objects such as
dogs and cats, head-seeded segmentation-based descriptors often
fail for other domains such as birds and humans. Examples of this
are shown in the middle column. The ground truth segmentation is
overlaid in red; the grab-cut based segmentation [38], seeded with
the head as foreground and everything outside the bounding box
as background, is overlaid in white. The right column shows our
part localization results using the strongly-supervised DPM. Best
viewed in color.

2. Background

2.1. Fine-grained categorization

Fine-grained classification has recently emerged as a
topic of great interest. A growing body of literature has pro-
posed various techniques and has addressed recognition on
a large number of fine-grained domains. These domains in-
clude: dog breed classification [26, 29, 37], subordinate cat-
egories of flowers [2, 1, 33, 34] and plants [4, 39], recogni-
tion of invertebrates [32], fine-grained classification on sub-
sets of ImageNet [16] such as fungi [15], and species-level
categorization of birds [23, 46]. We anticipate more work
in the near future on man-made categories such as cars [40]
and airplanes [30].

Following recent work by Belhumeur et al. [5] on lo-
calizing fiducial points in faces, Liu et al. [29] present an
alternate approach to build an exemplar-based geometric
and appearance models for detecting dog faces and local-
izing the facial keypoints. Another work in this vein is that
of Sfar et al. [39] who classify leaves and flowers by de-
scribing appearance with multiple coordinate or “vantage”
frames. A very recent and closely related contribution is the

Part-based One-vs-One Features (POOF) proposed by Berg
and Belhumeur [6] which leverages robust keypoint predic-
tion learning a descriptor coordinate frame for each pair of
keypoints.

Approaches such as [14, 36, 37] use region-level cues to
estimate object segmentations which facilitate fine-grained
classification. Some techniques use humans-in-the-loop,
asking human annotators to click on object parts, answer
questions regarding object attributes [13], or mark the re-
gion that best differentiates two confusing categories [17].
Template-based methods have also been investigated by
Yao et al. [45] and by Yang et al. [43]. Such approaches use
a set of fixed-position templates, thereby mitigating much
of the computational cost of sliding window approaches, yet
lack the spatial flexibility to deal with substantial pose vari-
ation.

2.2. Attribute Prediction

Attribute-based representations [22, 27, 28] present an-
other promising direction, offering the possibility of recog-
nizing a novel category with only a category description (no
imagery). Relevant subsequent work on attributes includes
that of Parikh and Grauman [35] exploring relative attribute
strength and that of Berg et al. [7] and Duan et al. [19] pro-
pose automatic discover of attributes to aid in fine-grained
classification. Perhaps the most closely related work on at-
tribute prediction is Bourdev et al. [10], which uses features
extracted from Poselet [11, 9] activations to predict nine bi-
nary attributes on images of humans. Another promising
alternative to Poselet-based approaches for effective trans-
fer of pose annotation from training images to test images
is the Exemplar SVM proposed by Malisiewicz et al. [31].

2.3. Deformable Parts Model

Inspired by the Pictorial Structures work of Fischler and
Elschlager [25], the Deformable Parts Model (DPM) of
Felzenszwalb et al. [24] has become one of the most effec-
tive and widely-used object detection approaches to date.
The object is represented by a coarse root HOG filter and
several higher resolution part filters. The DPM model uses
a mixture of components to capture variation in viewpoint
and/or pose (e.g. for a car, the three components might cor-
respond roughly to the front, side and three-quarter views).

Strongly-supervised DPM While the limited supervision
required for the DPM is advantageous, the latent parts pro-
vide no semantic information about the object which makes
pose-normalization challenging. Related work has used
strong supervision to train DPMs for human pose estima-
tion [41, 44], part localization [12] and object detection [3].
While these methods focus on detection, our objective is
different, pooling semantic part features across components
to derive a pose-normalized representation.
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Figure 2. Overview. Both of the proposed Deformable Part Descriptors (DPDs) are depicted above. The first descriptor (top row) applies a
strongly-supervised DPM [3] for part localization and then performs pose-normalization by pooling features from these inherently semantic
parts. The pose-normalized features Ψpn in Equation 3 can be used for either fine-grained recognition or attribute prediction (as indicated
by the dotted arrows). The second descriptor employs a weakly-supervised DPM [24] for part localization and then uses a learned semantic
correspondence model to pool features from the component-specific localized latent parts into semantic regions (the pose-normalized
descriptor Ψpn) shared by all components. In the part to region pooling (the black, yellow, magenta, and cyan lines), wider lines indicate
higher weight. Best viewed in color.

In this work, we adopt a variant of the strongly-
supervised DPM [3]. We use object part annotations and
aim to localize the semantic parts for pose-normalized de-
scriptors. Instead of initializing the fixed-size part filters
heuristically (energy maximization), we initialize the part
filters by using semantic part annotations. As in [3], we ini-
tialize the mixture components by clustering the annotated
poses instead of using the aspect ratio. After training the
mixture of root filters, we process the training images to get
the component assignment for each training example. Then,
for each component c, the part filters of this component are
initialized at the average relative locations with average size
among all the examples with component assignment c. Un-
like [3], we do not impose constraints on part overlap during
training.
Notation For both types of DPM, we use a latent SVM to
train the model parameters. The matching score of a model
β for a given image I is

S(I, β) = F β0 · Φ(I, p0) +

n∑
i=1

Spart(pi, I, β) + b

Spart(pi, I, β) = F βi · Φ(I, pi)− di · Φd(dxi, dyi) (1)

where F β0 is the root filter, F βi is the part filter, b is the bias
term, Φ(I, p) is the image feature vector of the sub-window
located at position p, (dxi, dyi) and di are respectively is
the displacement and displacement weight of the i-th part,
and Φd(dx, dy) = (dx, dy, dx2, dy2) is used to penalize the

part displacement[24]. The overall score is computed using
the best possible placements, i.e. fβ = maxz∈Z(I)S(I, β)
where Z(I) is the set of all possible latent values. The
model is trained by iteratively assigning the best possible
placements and learning the parameter β by stochastic gra-
dient descent. Then, the part locations are predicted by

Z(I) = argmax(Z,β)S(I, β) s.t. O(p0(I), bbox) > δ

Z(I) = (c(I), p0(I), · · · , pn(I)) (2)

where c(I) is the component assignment, p0(I) is the pre-
dicted bounding box, pi(I) is the predicted location of part
pi and O(p0, bbox) is the overlap between the predicted
bounding box and ground truth bounding box. δ is a thresh-
old to control predictions and we set it to be 0.65 in our ex-
periments. Given the part localizations, we show below how
to form DPM-based pose-normalized descriptors and pool
them across components, in a manner analogous to what the
Pose-pooling Kernel (PPK) [47] does via Poselets.

3. Deformable Part Descriptors (DPD)
We use the deformable part model (DPM)’s demon-

strated effectiveness for detecting objects as a foundation
for our pose-normalized approach to fine-grained recogni-
tion and attribute prediction. We do this as a faster and more
reliable alternative to Poselets which were previously pro-
posed for pose-normalization in both fine-grained recogni-
tion [23, 47] and attribute prediction [10]. As noted earlier,



we are not the first to consider using DPMs for fine-grained
recognition. Parkhi et al. [36, 37] trained a DPM model to
locate a cat’s or a dog’s head and then used this detection
both to describe the head appearance and to seed a segmen-
tation which would recover the rest of the body (See Figure
1). Our goal is to use DPM to localize the parts and pool
the pose-normalized image features induced by the part lo-
cations.

3.1. Strongly-supervised DPD

The underlying principle in pose-normalization is that
one can decompose an object’s appearance as observed in
one image and compare it to the same object (or object cat-
egory) as observed in a different image. This decomposition
generally equates to localizing semantic parts and then de-
scribing them.

From the DPM models, suppose that we have a
total of C components including mirror pairs C =
{c(1), c(2), . . . , c(C)}, where for odd values of j, c(j+1) is
the mirror component of c(j). Each component c(j) has
a set of parts P(j) = {p(j)1 , p

(j)
2 , . . . , p

(j)
P }, p

(j)
i denoting

the ith part for component c(j). We now define a pose-
normalized representation with R semantic pooling regions
R = {r1, r2, . . . , rR}. We define the pose-normalized rep-
resentation as

Ψpn(I) = [Ψ (I, r0) ,Ψ (I, r1) , . . . ,Ψ (I, rR)] . (3)

where Ψ(I, rl) is the pooled image feature for semantic re-
gion rl and Ψ(I, r0) is the image feature inside the root filter
or bounding box and we concatenate the image features to-
gether to get the final pose-normalized representation Ψpn.

To derive the pose-normalized representation for a given
detection Z(I) in Equation 2 (from component c(j) =
c(I)), we must figure out a mapping S(j) : P(j) → R. For
each part p(j)i , we seek to determine which pose-normalized
pooling region or regions {rl} the features Ψ(I, p

(j)
i )

should be mapped into. For strongly-supervised DPM, we
use the semantic part annotations and it is straightforward
to pool the corresponding part descriptor across different
components by setting the semantic regions the same as the
semantic parts from the strong DPM, i.e. R = P(j) for all
j ∈ {1, . . . , C}.

Ψ(I, rl) = Ψ(I, p
(j)
l ) j ∈ {1, . . . , C} (4)

3.2. Weakly-supervised DPD

Using a weak DPM, the latent parts of different com-
ponents have no explicit semantic correlation, nor is such
correspondence guaranteed to exist. We have explored two
options for dealing with this: one based on a per-component
appearance representation with no semantic parts; the other
leverages additional annotations to estimate semantic corre-
spondence of the latent parts across components.

The per-component representation is very straightfor-
ward. The training and test sets are partitioned into subsets
according to which component fires on them. A separate
classification model is trained for each component using
the features extracted on that component’s subset of training
images. This creates reasonable classifiers, however, there
are two shortcomings. First, the parts carry no semantic in-
formation (though this is not inherently necessary). Second,
the training data is fragmented across the C components, so
models will be accordingly weaker. Training fragmenta-
tion is particularly problematic for fine-grained recognition
where you may only have 15-30 training examples total for
each category. Experiments using this model are included
in Section 4.3.

The second representation, however, solves both of these
problems. By providing semantic annotations at training
time, we can model semantic correspondence between the
latent parts of different components. In effect, we learn the
semantic identity of each latent part in the model and can
thus pool features to a global pose-normalized model, inde-
pendent of which component fires during detection.

We model the pose-normalization as a weighted bipar-
tite graph G = (P,R,W) where w(j)

il ∈ W indicates the
degree to which p(j)i , the i-th part of component c(j) con-
tributes to rl.

Ψ (I, rl) =
1

N

P∑
i=1

w
(j)
il ·Ψ

(
I, p

(j)
i

)
(5)

where N =
∑P
i w

(j)
il is used for normalization. W is a

three dimensional matrix with size |P|× |R|× |C| and w(j)
il

is modeled as a function of the annotations A. Annotations
ak ∈ A could be keypoints (as used to train Poselets), rect-
angular regions (as used to train Strong DPM) or any other
type of semantic labels. In our example, we use the key-
point annotations included with the CUB2011 dataset [42]
and H3D dataset [11]. More precisely, we define w(j)

il as:

w
(j)
il =

A∑
k=1

ρkl · overlap
(
ak, p

(j)
i

)
(6)

where ρkl ∈ [0, 1] indicates a specified semantic relevance
for annotation ak to region rl (e.g. left ear is relevant to
head, left knee is not). The overlap

(
ak, p

(j)
i

)
function en-

codes the distribution of annotation ak within part p(j)i .
Let Ijk be the set of training images that have semantic

annotation ak and where c(j) is the component which fires.
We can formally define the fractional overlap

overlap
(
ak, p

(j)
i

)
=
|{I ∈ Ijk|ak(I) ∩ p(j)i 6= ∅}|

|Ijk|
. (7)

It is worth noting that the training set need not be exhaus-
tively labeled with semantic annotations. Fewer annotations



just mean smaller Ijk and thus coarser predictions of the
weights w(j)

il .

3.3. Classification

Given the pose-normalized representation Ψpn(I) in
Equation 3, we employ a linear SVM for the final clas-
sification. For the strongly-supervised DPD, we use the
annotated semantic parts to get Ψpn for training and part
localization from Equation 2 for testing; for the weakly-
supervised DPD, we utilize Ψpn from Equation 2 for both
training and testing. Due to the sparsity of training exam-
ples for certain poses, there will be some test images for
which a correct detection cannot be found even given a
specified object bounding box. This means that we don’t
have predictions for the part locations in Equation 2. In
such cases, we can use the classifier trained on the feature
descriptor inside the bounding box Ψ(I, r0) without any
pose-normalization.

4. Experiments
In this section, we will present a comparative perfor-

mance evaluation of our proposed method. We conduct ex-
periments on the commonly used fine-grained benchmark
Caltech-UCSD bird dataset [42] as well as the Berkeley
Human Attribute dataset from [10]. Our system can pro-
cess several images per second, leveraging the available
fast DPM implementation in [20]. An open-source ver-
sion of our end-to-end DPD implementation is available
at http://dpd.berkeleyvision.org. In contrast, the
fastest available implementation of Poselet-based [47] relies
on a C++ reimplementation of [11] and takes approximately
10 seconds per frame on a comparable machine.

4.1. Implementation Details

Image Features and Classification After predicting the
part regions via DPM, we use kernel descriptors [8] to ex-
tract feature vectors for final classification.1 Specifically,
we use four types of kernel descriptors: gradient, local bi-
nary pattern (lbp), rgb color, and normalized rgb color. Fol-
lowing the setting in [8], we compute kernel descriptors
on local image patches of size 16 x 16 over a dense reg-
ular grid of step size 8 and then apply a spatial pyramid on
top. We use vector quantization of these descriptors with a
1000-element codebook, concatenating per-region descrip-
tor histograms into a single vector per image. These vec-
tors are provided as input to a linear support vector machine
(liblinear with power scaled features).

Efficient Weak Pooling In Equation 6, while a fully op-
timal formulation would likely learn the best convex com-
bination of ρkl and utilize sophisticated distributions for all

1For results using deep convolutional features, see [18] for more details.

pairs (ak, p
(j)
i ), we make two simplifying assumptions for

efficiency and simplicity. First, we define ρkl as an indi-
cator such that ρkl ∈ {0, 0.5, 1} and

∑
l ρkl = 1; in other

words, each semantic part ak is associated with one or more
regions rl (in a few cases it is shared between two, such as
the shoulder between head and torso regions). This repre-
sents partitioning the semantic partsA amongst the pooling
regions R. Second, to evaluate the overlap(ak, p

(j)
i ) func-

tion in Equation 7, we evaluate the weakly-supervised de-
tector on the semantically annotated data, noting for each
detection where the various parts {ak} fall. Across the an-
notated data we accumulate distributions for each part p(j)i
(we only include contributions toward p(j)i when c(j) fires).
While the optimal method would likely model these spatial
distributions with respect to p(j)i , we relax this and simply
record the fraction of semantically annotated images which
have ak, for which c(j) fires and where ak has high overlap
with (or falls within) p(j)i .

4.2. Caltech-UCSD Birds-200 Dataset

We conduct our experiments on the 200-category Cal-
tech UCSD bird dataset, one of the most widely used and
competitive fine-grained classification benchmarks. Fol-
lowing [23], we use two semantic parts for the bird dataset:
head and body. We utilize both the earlier (CUB200-2010)
and current (CUB200-2011) versions of the bird dataset for
better comparison.

CUB200-2010 The initial version of the CUB200 dataset
contains 6033 images of 200 different bird species in North
America. There are around 30 images per class. We use
the provided train-test split which uses 15 images per class
for training and the balance for testing. Each image in the
dataset has a bounding box annotation but no other anno-
tation is provided. In order to train the strong DPM with
semantic parts, we manually annotate the part locations for
the training images, i.e. head and body boxes. If one
of the parts is not visible, we mark its visibility state as
0. Given those annotations on training images, we train a
strong DPM with 5 components, each with these two parts.
Due to the lack of additional annotations, we are unable to
evaluate the DPD-weak approach on this dataset.

Table 1 shows the mean accuracy of our method on the
CUB200-2010 dataset. We also compare with other pub-
lished methods, including MKL [13], random forest [46],
TriCos [14], template matching [43], segmentation [1] and
the recently-published Bubblebank method [17]. One base-
line is to use the same image descriptors used by our meth-
ods inside the bounding box but without any pose normal-
ization, i.e. KDES [8], which yields 26.4% mean accuracy,
better than some previous methods. Our approach achieves
34.5% mean accuracy, which outperforms the best previous

http://dpd.berkeleyvision.org


Method Mean Accuracy(%)
MKL [13] 19.0
Random Forest [46] 19.2
KDES [8] 26.4
TriCos [14] 26.7
Template matching [43] 28.2
Segmentation [1] 30.2
Bubblebank [17] 32.5
DPD-strong-2 34.5

Table 1. Results on CUB200-2010 dataset. We note that [17] uses
additional human labels. The best performance is achieved by the
two-part strongly-supervised DPD model (DPD-strong-2).

Method Mean Accuracy(%)
KDES [8] 42.53
Template matching[43] 43.67
Oracle 64.53
DPD-weak-8 50.98
DPD-strong-2 50.05
DPD-strong-2-no-head 43.15
DPD-strong-2-no-body 46.77

Table 2. Results on CUB200-2011 dataset using KDES features.
The best performance is achieved by the 8-part weakly-supervised
DPD model (DPD-weak-8). Oracle is akin to DPD-strong but uses
the ground truth head and body locations.

result [17], and that requires human annotations obtained
using a crowdsourced online game to find the most discrim-
inative regions.

CUB200-2011 The CUB200-2011 is the latest version of
the dataset, which includes more high-quality images and
has 15 part annotations, e.g. beak, crest, throat, left-eye,
left-wing, nape, etc. This dataset contains 11,788 images
of the same 200 bird species as CUB200-2010. We use the
default training/test split, which gives us around 30 training
examples per class. We train both a weak DPM and a strong
DPM to facilitate part localization. For the strong DPM, we
train a mixture of five components, each with two parts and
we partition the keypoint annotations to generate the head
and body part annotations. Specifically, we choose the se-
mantic part annotations as the minimum rectangular region
to cover the part’s specified subset of keypoints. This strong
DPM enables part localization with the following accura-
cies: the head part with 45.1% precision and 43.5% recall,
the body part with 77.5% precision and 75.2% recall. Here
we mark a correct prediction when the predicted part box
and the ground truth part box have an overlap over 0.5. For
the weak DPM, we train a mixture of three components,
each with 8 parts and using pooling as described in Equa-
tion 5. The pooling weights learned for the bird model are
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Figure 3. Learned Per-component Pooling Weights. Pictured are
examples of the weighting models that are learned for the weakly-
supervised bird (above) and human (below) models (DPD-weak).
Shown is just one of the components for each model. In each
weight matrix, rows correspond to the semantic regions that the
eight latent parts (columns) are pooled to. We emphasize that the
weights are learned automatically. Best viewed in color.

visualized in the top part of Figure 3.

Table 2 presents our classification results on the
CUB200-2011 dataset using KDES [8] features. To com-
pute the baseline method, we use only the bounding box
region, yielding 42.53% mean accuracy. We also evaluate
the template matching method of [43], using code released
by the authors. Our DPD-strong achieves 50.05% mean
accuracy and DPD-weak achieves 50.98% on this dataset,
outperforming other state-of-art methods. To understand
the contribution of individual DPM parts to the classifica-
tion accuracy, we blind a DPD-strong to individual seman-
tic parts in an ablation study. These results are included
in Table 2. We find that localizing the head part of the
bird is especially important: removing the head part, the
CUB200-2011 accuracy falls to 43.15%. Additional exper-
iments on the importance of individual parts are available on
our DPD project webpage. In terms of other published work
on this dataset, PPK [47] makes use of Poselet activations
to generate pose-normalized representation and achieves a



Attribute Freq SPM [10] Poselets [10] Per-component DPD-weak-8 DPD-strong-3
is male 0.593 68.1 82.4 80.5 82.9 83.7

has long hair 0.300 40.0 72.5 60.8 67.8 70.0
has glasses 0.220 25.9 55.6 33.6 40.7 38.1

has hat 0.166 35.3 60.1 61.3 70.3 73.4
has t-shirt 0.235 30.6 51.2 43.7 46.1 49.8

has long sleeves 0.490 58.0 74.2 74.3 76.5 78.1
has shorts 0.179 31.4 45.5 50.3 59.4 64.1
has jeans 0.338 39.5 54.7 72.3 77.1 78.1

has long pants 0.747 84.3 90.3 90.6 93.0 93.5
Mean AP 0.363 45.91 65.18 63.03 68.20 69.88

Table 3. Results on the Human Attributes dataset. Freq is the label frequency (fraction of specified attributes that are positive) and
Per-component gives the results when using the per-component pooling method discussed in the beginning of Section 3.2. The values
above denote mean average precision. For the full Precision-Recall curves, see Figure 4. Another baseline using the same image features
but considering only the bounding box region achieves 66.58% mean AP.

mean accuracy of 28.18%. The authors of POOF [6] re-
cently reported performance of 56.89% enabled both by ac-
curate part (keypoint) localization and through the training
of thousands of classifiers. We have experimented with re-
placing the KDES features with deep convolutional features
and have reported 64.96% performance (please see [18] for
details).

4.3. Human Attributes Dataset

The human attributes dataset [10] contains 8035 images
collected from the H3D [11] and PASCAL VOC 2010 [21]
datasets. There are nine attributes (e.g. has t-shirt, has
jeans), and each one has a label of {-1, 1, 0} respectively
meaning absent, present and unspecified. We use the H3D
data to train a strong DPM with 3 components and 3 se-
mantic parts (head, torso and legs) and a weak DPM with 3
components and 8 parts. Example pooling weights learned
for the weak DPM are visualized in the lower part of Fig-
ure 3. Similar to the CUB200-2011 dataset, the semantic
part annotations are generated from the keypoint annota-
tions available from H3D. We then test on both the training
and test images of the human attributes dataset to localize
the parts and get pose-normalized image descriptors for at-
tribute prediction. Table 3 shows prediction results on these
nine attributes. Two baselines are included for comparison:
SPM which uses spatial pyramid match inside the bounding
box and the Poselet approach of Bourdev, et al.; both results
are taken from [10]. We also include the results of using per-
component classifiers, measuring average precision under
the precision-recall curve. Precision-Recall curves for each
of the nine attributes are shown in Figure 4. We use mean
AP instead of mean accuracy for this dataset because the
percentage of positive examples for each attribute is quite
varied. From the table, we see that both DPD methods out-
perform pose-normalization using Poselets and moreover,
our method is approximately 30 times more efficient.

0 0.5 10

0.5

1
has long pants

AP: 90.3

AP: 93.5
AP: 93.0

0 0.5 10

0.5

1
has jeans

AP: 54.7

AP: 78.1
AP: 77.1

0 0.5 10

0.5

1
has shorts

AP: 45.5

AP: 64.1
AP: 59.4

0 0.5 10

0.5

1
has long sleeves

AP: 74.2

AP: 78.1
AP: 76.5

0 0.5 10

0.5

1
has t-shirt

AP: 51.2
AP: 49.8
AP: 46.1

0 0.5 10

0.5

1
has hat

AP: 60.1

AP: 73.4
AP: 70.3

0 0.5 10

0.5

1
has glasses

AP: 55.6

AP: 38.1
AP: 40.7

0 0.5 10

0.5

1
has long hair

AP: 72.5
AP: 70.0
AP: 67.8

is male

0 0.5 10

0.5

1

AP: 82.4
AP: 82.9
AP: 83.7

Figure 4. Attribute Prediction Precision-Recall Curves. Results
are shown for each given attribute. The blue curve and mean av-
erage precision (AP) scores are for the DPD-strong. The green
curve and mean AP scores are for the DPD-weak. The red curve
and mean AP scores are for the previous start-of-the art technique
of Bourdev et al. [10]. The dashed line indicates the frequency
(fraction of positives). Best viewed in color.

5. Conclusion

In this paper we have proposed Deformable Part De-
scriptors (DPDs), a pose-normalized representation based
on DPMs. We described two such pose-normalized meth-
ods, respectively applicable to strongly-supervised and
weakly-supervised variants of deformable part models. The
first method exploits the semantics inherent in the strongly-
supervised DPM’s parts, pooling them directly to form a
pose-normalized descriptor. The second uses semantic an-



notations to learn cross-component correspondences be-
tween parts of the weakly-supervised DPM. These corre-
spondences are then used to generate a pose-normalized
descriptor. We have evaluated the proposed DPD meth-
ods, surpassing the previous state-of-the-art performance on
standard datasets for both fine-grained recognition and at-
tribute prediction.

In conclusion, we outline some directions for future
work. First, we suggest that a greater number of supervised
parts (as used in Azizpour et al. [3]) would increase the de-
scriptive power of the DPD model. However, to do this, we
would need to address the issue of self-occlusion. Second,
learning of cross-component part correspondences could be
enhanced by considering unconstrained convex combina-
tions for the semantic relevance coefficients ρkl and more
optimal overlap(·) functions that address the spatial distri-
butions of the semantic annotations within parts, instead of
simply considering occurrence frequency.
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