
Research.js: Evaluating Research Tool Usability on the Web

Joel Galenson, Cindy Rubio-González, Sarah Chasins, Liang Gong
University of California, Berkeley

{joel,rubio,schasins,gongliang13}@cs.berkeley.edu

Abstract
Many research projects are publicly available but rarely used
due to the difficulty of building and installing them. We
propose that researchers compile their projects to JavaScript
and put them online to make them more accessible to new
users and thus facilitate large-scale online usability studies.

1. Motivation
When researchers create new programming languages and
tools, they sometimes choose to release them publicly. Un-
fortunately, released projects are often complicated to in-
stall, which makes it difficult to find enough users to con-
duct large-scale usability studies. Yet releasing tools that are
accessible to users is typically difficult for researchers. We
propose building an infrastructure that makes public releases
easy for both potential users and researchers, thereby facili-
tating large-scale user studies.

Unfortunately, even when languages and tools are pub-
licly available, they are often difficult to build and install.
A recent conference encouraged authors to submit artifacts
and stipulated that the setup should take less than 30 min-
utes [6]. For some potential users, including reviewers and
researchers who intend to use or evaluate the artifacts, this
may be a reasonable amount of time. However, this level of
time commitment is likely to prevent a potential user with a
passing interest from trying a programming language or tool.
In order to keep these users interested and collect data about
their usage, we must lower the barriers to entry. Making it
easy for these moderately interested parties to participate is
key to achieving truly large-scale user studies.

In recent years, the web has become an increasingly pow-
erful platform, one on which applications are easily portable.
Some research projects have made online versions of their
tools available, making them easy to explore (e.g., [3, 7]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLATEAU ’14, October 21, 2014, Portland, OR, USA..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2277-5/14/10. . . $15.00.
http://dx.doi.org/10.1145/2688204.2688217

To make research tools available online, current practice
requires researchers to set up and run their own servers,
which run their tools on users’ inputs. Setting up such a
server can be a difficult, time-consuming, and costly pro-
cess. Because of load restrictions, this approach imposes a
limit on the number of concurrent users. Further, most re-
search tools are not designed to be secure, which makes it
dangerous to run them on a server that accepts user inputs.
Some researchers also distribute their tools as virtual ma-
chine images, but these are very heavyweight.

We propose helping researchers compile their tools to
JavaScript, thereby allowing anyone with a web browser to
use them. This would enable researchers to make their tools
available online without running their own secure servers.
The relatively-lightweight client-side JavaScript would com-
plete all processing, eliminating researchers’ security con-
cerns. Further, the tools can be distributed within static web-
pages, which can easily be hosted on any number of exter-
nal services, so researchers need not run servers themselves.
With this approach, users could browse language and tool
demos as easily as they browse web pages, trying tools be-
fore deciding to install them locally. If users consent, their
usage data could be sent to the researchers, allowing each
visitor to serve as a participant in a user study. The collected
data could then be leveraged to evaluate and ultimately im-
prove usability. In essence, the online release becomes a
large-scale remote user study.

The research community has already started advocating
releases. Conferences increasingly encourage authors to sub-
mit artifacts [1] to allow others to evaluate and build on their
contributions. While this too is a laudable goal, we focus not
on reproducing evaluations but on the potential of public re-
leases to bring large-scale remote user studies within reach.

2. Proposed Approach
We propose building an infrastructure that makes it easy to
compile existing projects to JavaScript and optionally collect
usage data. We plan to leverage existing tools to translate
programs into JavaScript. One such tool is Emscripten [15],
which compiles C/C++ code and LLVM [14] bitcode to
JavaScript. There are other projects that compile many lan-
guages, including Scala, Haskell, and Python, directly to
JavaScript [2, 5].

Changes required

Name Source Build Compiles Runs
MiniSat [13] 0 (0) 1 (1) 4 4

Lingeling [10] 1 (1) 0 (0) 4 4
Boolector [11] 0 (0) 0 (0) 4 4

Hugs [4] 1 (1) 1 (1) 4 4
Z3 [12] 1 (1) 1 (1) 4 8

LLVM+Clang [14] 12 (5) 3 (3) 4 8

Table 1. The projects we have attempted to compile with
Emscripten, the number of changes required to compile them
(the number of lines of code and files changed), and whether
they successfully compile and run.

An alternative plan for running research tools in a web
browser is to use interpreters written in JavaScript [9] with-
out compiling the project under evaluation. As a last resort,
projects could be run in a JavaScript PC emulator [8].

In our infrastructure, we also plan to collect and analyze
traces automatically (with users’ consent) to help evaluate
projects’ usability and guide future improvements.

There are several issues to consider when translating re-
search projects into JavaScript and running in a browser.

Closed-Source Binaries. Many projects use closed-source
binaries. It may be possible to compile assembly code to
JavaScript or decompile binaries into a higher-level language
that could be compiled directly. Alternatively, we could pro-
vide an option to obfuscate the generated JavaScript code.

Libraries. A research project might depend on many exter-
nal libraries, each of which would have to be compiled with
the above techniques. We believe that pre-compiling and es-
tablishing a central repository that hosts all known ported
libraries would help alleviate this problem.

Performance. Running a research project in a browser is
slower than running it natively. Fortunately, performance
is not generally critical for evaluating usability. Thus we
prioritize compatibility and ease-of-use over performance.

3. Exploration and Early Experience
In our prototype, we use Emscripten [15], which is designed
to allow execution at close to native speeds. Many projects
have been ported to JavaScript with Emscripten, including
Unreal Engine 3, LaTeX, Lua, Python, and parts of LLVM
and Emscripten [2, 5]. It is robust and, with its emphasis
on porting games to the web, performs well. We have used
it to compile the tools, such as compilers and SAT/SMT
solvers, listed in Table 1. Only one project required changing
more than a single line of code.1 Our prototype does not yet
automatically generate code to collect tool usage statistics.

To demonstrate the feasibility of the proposed approach,
we have made the changes required to compile each project
with Emscripten publicly available at https://github.

1 Most of the source changes involved modifying #include statements.

com/jgalenson/research.js, which links to demos for
MiniSat, Boolector, and Hugs.

We analyzed the performance of our JavaScript versions
of MiniSat, Lingeling, and Boolector on a few benchmarks
hand-chosen from SATLIB and SMT-LIB 2. On average,
the Emscripten-compiled versions are 3 times slower than
native, which we believe is sufficient for our purposes. To
show that performance is likely to improve further over time,
we compiled and tested MiniSat with eighteen-month-old
versions of Emscripten and Firefox and found that it was 11
times slower than native. Using our prototype, compile times
are 2-7 times slower and file sizes of Emscripten-compiled
projects are less than 2 times larger.

Acknowledgments
We would like to thank Christos Stergiou, Nishant Totla, and
Cuong Nguyen for their useful advice. We also appreciate
the valuable comments from anonymous reviewers and our
shepherd Joshua Sunshine for improving the paper.

References
[1] Artifact Evaluation for Software Conferences. http://www.

artifact-eval.org/. Accessed: 09/10/2014.

[2] Emscripten. https://github.com/kripken/

emscripten/wiki. Accessed: 11/22/2013.

[3] Flapjax. http://www.flapjax-lang.org/. Accessed:
07/03/2013.

[4] Hugs. http://www.haskell.org/hugs/. Accessed:
11/22/2013.

[5] List of languages that compile to JS. https:

//github.com/jashkenas/coffee-script/wiki/

List-of-languages-that-compile-to-JS. Accessed:
11/22/2013.

[6] OOPSLA Artifacts. http://splashcon.org/2013/cfp/

665. Accessed: 07/03/2013.

[7] rise4fun. http://rise4fun.com/. Accessed: 07/03/2013.

[8] JavaScript PC Emulator. http://bellard.org/jslinux/.
Accessed: 07/03/2013.

[9] repl.it. http://repl.it/. Accessed: 07/03/2013.

[10] A. Biere. Lingeling, plingeling, picosat and precosat at sat
race 2010. FMV Report Series Technical Report, 10(1), 2010.

[11] R. Brummayer and A. Biere. Boolector: An efficient smt
solver for bit-vectors and arrays. In TACAS, pages 174–177.
Springer, 2009.

[12] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
TACAS, pages 337–340. Springer, 2008.

[13] N. Eén and N. Sörensson. An extensible sat-solver. In
Theory and Applications of Satisfiability Testing, pages 502–
518. Springer, 2004.

[14] C. Lattner and V. Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In
CGO’04, Palo Alto, California, 2004.

[15] A. Zakai. Emscripten: an llvm-to-javascript compiler. In
SPLASH ’11, pages 301–312, 2011.

https://github.com/jgalenson/research.js
https://github.com/jgalenson/research.js
https://github.com/jgalenson/research.js
http://www.artifact-eval.org/
http://www.artifact-eval.org/
https://github.com/kripken/emscripten/wiki
https://github.com/kripken/emscripten/wiki
http://www.flapjax-lang.org/
http://www.haskell.org/hugs/
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
http://splashcon.org/2013/cfp/665
http://splashcon.org/2013/cfp/665
http://rise4fun.com/
http://bellard.org/jslinux/
http://repl.it/

	Motivation
	Proposed Approach
	Exploration and Early Experience

