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ABSTRACT
Algorithms have historically been evaluated in terms of the
number of arithmetic operations they performed. This anal-
ysis is no longer sufficient for predicting running times on
today’s machines. Moving data through memory hierarchies
and among processors requires much more time (and energy)
than performing computations. Hardware trends suggest
the relative costs of this communication will only increase.
Proving lower bounds on the communication of algorithms
and finding algorithms that attain these bounds are there-
fore fundamental goals. We show that the communication
cost of an algorithm is closely related to the graph expansion
properties of its corresponding computation graph.

Matrix multiplication is one of the most fundamental prob-
lems in scientific computing and in parallel computing. Ap-
plying expansion analysis to Strassen’s and other fast matrix
multiplication algorithms, we obtain the first lower bounds
on their communication costs. These bounds show that the
current sequential algorithms are optimal but that previous
parallel algorithms communicate more than necessary. Our
new parallelization of Strassen’s algorithm is communication-
optimal and outperforms all previous matrix multiplication
algorithms.

1. INTRODUCTION
Communication (i.e., moving data) can greatly dominate

the cost of an algorithm, whether the cost is measured in
running time or in total energy. This holds for moving data
between levels of a memory hierarchy or between processors
over a network. Communication time per data unit varies by
orders of magnitude, from order of 10−9 seconds for an L1
cache reference, to order of 10−2 seconds for disk access. The
variation can be even more dramatic when communication
occurs over networks or the internet. In fact, technological
trends [16, 17] are making communication costs grow expo-
nentially over time compared to arithmetic costs. Moore’s
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Law is making arithmetic on a chip improve at about 60%
per year, but memory and network bandwidth is improving
at only 26% and 23% per year [16]. So even in cases where
communication is not the bottleneck today, it may be in the
future.

Ideally, we would be able to determine lower bounds on
the amount of required communication for important prob-
lems and design algorithms that attain them, namely algo-
rithms that are communication-optimal. These dual prob-
lems have long attracted researchers, with one example be-
ing classical Θ(n3) matrix multiplication (see further details
below), with lower bounds in [18, 20] and many optimal
sequential and parallel algorithms, e.g., [1, 11].

These lower bounds have recently been extended to a large
class of other classical linear algebra problems, including lin-
ear system solving, least squares, and eigenvalue problems,
for dense and sparse matrices, and for sequential and parallel
machines [9]. Surprisingly, the highly optimized algorithms
in widely implemented libraries like LAPACK and ScaLA-
PACK [3] often do not attain these lower bounds, even in
the asymptotic sense. This has led to much recent work in-
venting new, faster algorithms that do; see the citations in
[9, 10] for references.

In this paper we describe a novel approach to prove the
first communication lower bounds for Strassen’s Θ(nlog2 7)
matrix multiplication algorithm, as well as many similar
fast algorithms. Specifically, we introduce expansion analy-
sis of the computational graphs of the algorithms and show
that the expansion helps determine the communication cost.
These communication cost bounds are lower than those of
classical matrix multiplication: this means that not only
does Strassen’s algorithm reduce computation, it also cre-
ates an opportunity for reducing communication. In addi-
tion, the lower bound decreases as the amount of available
memory grows, suggesting that using extra memory may
also allow for faster algorithms.

In fact there is an optimal parallel algorithm that attains
our lower bounds for varying amounts of memory, whose
performance exceeds all other known matrix multiplication
implementations, classical or Strassen-based, on a large par-
allel machine [6], see Figure 1. In the rest of this paper we
focus on explaining our new lower bounds for Strassen’s al-
gorithm and their implications.

1.1 Communication Models
In order to analyze the communication costs of algorithms

we consider idealized memory and communication models.
In the sequential case (see Figure 2), we consider a ma-
chine with two levels of memory hierarchy: a fast memory
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Figure 1: Strong-scaling performance comparison of
parallel matrix multiplication algorithms on a Cray
XT4. All data corresponds to a fixed dimension
n = 94080. The x-axis represents the number of pro-
cessors p on a log scale, and the y-axis measures
effective performance, or 2n3/(p · time). The new
algorithm outperforms all other known algorithms
and exceeds the peak performance of the machine
with respect to the classical flop count. The new
algorithm runs 24-184% faster than the best pre-
vious Strassen-based algorithm and 51-84% faster
than the best classical algorithm for this problem
size.
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Figure 2: Sequential two-level (left) and parallel
distributed-memory (right) models.

of size M words (where computation is performed) and a
slow memory of infinite size. We assume that the input ini-
tially resides in slow memory and is too large to fit in fast
memory. We define the communication cost of a sequen-
tial algorithm to be the total number of words transferred
between the slow and fast memories.

In the parallel case (see Figure 2), we consider p proces-
sors, each with a local memory of size M , connected over a
network. In this case, the communication cost is the num-
ber of words transferred between processors, counted along
the critical path of the algorithm. That is, two words that
are communicated simultaneously between separate pairs of
processors are counted only once.

1.2 Classical Matrix Multiplication
To illustrate the effects of arithmetic reordering on com-

munication and running time of a sequential computation,
consider the problem of computing matrix multiplication

C = A · B, where the (i, j)th output element is computed
by the classical formula Cij =

∑
k Aik · Bkj . One “naive”

ordering of the computation of the classical algorithm can
be specified simply by three nested loops (see Algorithm 1).
For matrices that are too large to fit in fast memory, this
ordering requires the communication of at least one operand
for each scalar multiplication, resulting in a total communi-
cation cost of Θ(n3). A natural question to ask is: can we
do better?

Algorithm 1 Naive Classical Matrix Multiplication

1: for i = 1 to n do
2: for j = 1 to n do
3: for k = 1 to n do
4: Cij = Cij + Aik ·Bkj

The answer is yes. We can reduce communication by us-
ing a “blocked” algorithm (see Algorithm 2). The idea is to
partition A, B, and C into square blocks of size b×b so that
three blocks can simultaneously fit in the fast memory. We
use the notation C[I, J ] to refer to the (I, J)th b × b block
of the C matrix. When C[I, J ], A[I,K], and B[K,J ] are all
in fast memory, then the inner loop of the algorithm (corre-
sponding to Θ(b3) arithmetic operations) can be performed
with no more communication.

Algorithm 2 Blocked Classical Matrix Multiplication

1: for I = 0 to n/b do
2: for J = 0 to n/b do
3: for K = 0 to n/b do
4: C[I, J ] = C[I, J ] + A[I,K] ·B[K,J ]

If we pick the maximum block size of b =
√

M/3, this

results in a total of Θ((n/
√
M)3) block operations, each re-

quiring Θ(M) words to be communicated. Hence the total

communication cost is Θ(n3/
√
M), a factor of Θ(

√
M) bet-

ter than that of the naive algorithm.
The typical performance difference of the naive and blocked

algorithms on a sequential machine is an order of magnitude.
With the blocked algorithm, attained performance is close
to the peak capabilities of the machine. Again, the ques-
tion arises: can we do better? Can we further reorder these
computations to communicate less?

If we insist on performing the Θ(n3) arithmetic operations
given by the classical formulation, the answer is no. Hong
and Kung [18] proved a communication cost lower bound

of Ω(n3/
√
M) for any reordering, showing that the blocked

algorithm is communication-optimal. But this is not the end
of the story: this communication optimality of the blocked
algorithm assumes Θ(n3) arithmetic operations.

1.3 Strassen’s Matrix Multiplication
While the classical algorithms for matrix multiplication

are already optimized for reducing communication cost to
the minimum possible, a completely different algorithmic
approach for this problem is possible. Let us recall Strassen’s
algorithm [24] (see Algorithm 3).

Strassen’s key idea is to multiply 2 × 2 matrices using 7
scalar multiplies instead of 8. Because n×n matrices can be
divided into quadrants, Strassen’s idea applies recursively.
Each of the seven quadrant multiplications is computed re-



cursively, and the computational cost of additions and sub-
tractions of quadrants is Θ(n2). Thus, the recurrence for
the flop count is F (n) = 7F (n/2) + Θ(n2) with base case
F (1) = 1, which yields F (n) = Θ(nlog2 7), which is asymp-
totically less computation than the classical algorithm.

The main results presented in the following section expose
a wonderful fact: not only does Strassen’s algorithm require
less computation than the classical algorithm, but it also
requires less communication!

Algorithm 3 Strassen’s Matrix Multiplication Algorithm

Input: A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
∈ Rn×n

1: if n = 1 then
2: C = A ·B
3: else
4: M1 = (A11 + A22) · (B11 + B22)
5: M2 = (A21 + A22) ·B11

6: M3 = A11 · (B12 −B22)
7: M4 = A22 · (B21 −B11)
8: M5 = (A11 + A12) ·B22

9: M6 = (A21 −A11) · (B11 + B12)
10: M7 = (A12 −A22) · (B21 + B22)
11: C11 = M1 + M4 −M5 + M7

12: C12 = M3 + M5

13: C21 = M2 + M4

14: C22 = M1 −M2 + M3 + M6

Output: A ·B = C =

(
C11 C12

C21 C22

)
∈ Rn×n

2. COMMUNICATION LOWER BOUNDS
In this section we state our main results: communication

lower bounds for Strassen’s matrix multiplication. The proof
technique described in Section 3 allows us to state bounds
in both sequential and parallel cases. As mentioned in the
Introduction, the lower bounds are lower than the bounds
for the classical algorithm [18, 20]. In both sequential and
parallel cases, there now exist communication-optimal algo-
rithms that achieve the lower bounds.

2.1 Sequential Case
We obtain the following lower bound:

Theorem 1 ([10]). Consider Strassen’s algorithm im-
plemented on a sequential machine with fast memory of size
M . Then for M ≤ n2, the communication cost of Strassen’s
algorithm is

IO(n,M) = Ω

((
n√
M

)log2 7

·M

)
.

It holds for any implementation and any known variant of
Strassen’s algorithm that is based on performing 2×2 matrix
multiplication with 7 scalar multiplications. This includes
Winograd’s O(nlog2 7) variant that uses 15 additions instead
of 18, which is the most commonly used fast matrix multi-
plication algorithm in practice.

This lower bound is tight, in that it is attained by the
standard recursive sequential implementation of Strassen’s
algorithm. The recursive algorithm’s communication cost
is given by the recurrence IO(n,M) ≤ 7 · IO

(
n
2
,M
)

+

O(n2). The base case occurs when the input and output

Classical Strassen
Sequential (

n√
M

)3
M

(
n√
M

)log2 7

Mlower bound
[18, 10]

Table 1: Asymptotic communication cost lower
bounds for sequential matrix multiplication, where
n is the matrix dimension and M is the fast memory
size. Note that although the expressions for clas-
sical and Strassen are similar, the proof techniques
are quite different.

sub-matrices fit in the fast memory and the matrix multi-
plication can be performed with no further communication.
This yields

IO(n,M) = O

((
n√
M

)log2 7

·M

)
for M ≤ n2, matching the lower bound stated in Theorem 1.

2.2 Parallel Case
The proof technique of Theorem 1 extends to parallel ma-

chines, yielding:

Corollary 2 ([10]). Consider Strassen’s algorithm im-
plemented on a parallel machine with p processors, each with

a local memory of size M . Then for M = O
(

n2

p2/ log2 7

)
, the

communication cost of Strassen’s algorithm is

IO(n, p,M) = Ω

((
n√
M

)log2 7

· M
p

)
.

While Corollary 2 does not hold for all sizes of local mem-
ory (relative to the problem size and number of proces-
sors), the following memory-independent lower bound can
be proved using similar techniques [5] and holds for all local
memory sizes, though it requires separate assumptions.

Theorem 3 ([5]). Suppose a parallel algorithm perform-
ing Strassen’s matrix multiplication load balances the com-
putation. Then, the communication cost is

IO(n, p) = Ω

(
n2

p2/ log2 7

)
.

Note that the bound in Corollary 2 dominates the one
in Theorem 3 for M = O(n2/p2/ log2 7). Thus, the tightest
lower bound for parallel implementations of Strassen is the
maximum of these two bounds. Table 2.2 and Figure 3, both
adapted from [5], illustrate the relationship between the two
functions. Figure 3 in particular shows bounds on strong
scaling: for a fixed dimension n, increasing the number of
processors (each with local memory size M) within a lim-
ited range does not increase the total volume of communica-
tion. Thus the communication cost along the critical path
decreases linearly with p. This is because in this “perfect
strong scaling range” the dominant lower bound includes a
p in the denominator; however, when the second bound be-
gins to dominate, the denominator includes a p2/3 rather
than p, and increasing p leads to more communication vol-
ume. As shown in the figure, a similar phenomenon occurs
for the classical algorithm, though with slightly different pa-
rameters [5, 23].



Classical Strassen
Memory-dependent (

n√
M

)3
M
p

(
n√
M

)log2 7
M
p

lower bound
[20, 10]

Memory-independent
n2

p2/3
n2

p2/ log2 7lower bound
[5]

Table 2: Asymptotic communication cost lower
bounds for parallel matrix multiplication, where n
is matrix dimension, M is local memory size, and p
is the number of processors.
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Figure 3: Communication costs and strong scaling
of matrix multiplication: classical vs. Strassen. The
vertical axis corresponds to p times the communica-
tion cost, so horizontal lines correspond to perfect
strong scaling. The quantity pmin is the minimum
number of processors required to store the input
and output matrices (i.e., pmin = 3n2/M where n is
the matrix dimension and M is the local memory
size).

The recent parallel algorithm for Strassen’s matrix multi-
plication [6] has communication cost

IO(n, p,M) = O

((
n√
M

)log2 7

· M
p

+
n2

p2/ log2 7

)
where p is the number of processors and M is the size of the
local memory. Note that this matches the lower bounds of
Corollary 2 and Theorem 3 above. A similar algorithm for
Strassen’s matrix multiplication in the BSP model is pre-
sented in [22].

3. PROOF HIGHLIGHTS
The crux of the proof of Theorem 1 is based on estimating

the edge expansion of the computation graph of Strassen’s
algorithm. We describe below how communication cost is
closely related to the edge expansion properties of this graph.
The graph has a recursive structure, and we use a combina-
torial analysis of the expansion. The high-level argument is
based on partitioning the computation in segments, which
we explain in Section 3.3. Let us first define two key con-

cepts: computation graphs and edge expansion. See [10] for
the full proof.

3.1 Computation Graphs
The computation performed by an algorithm on a given

input can be modeled as a computation directed acyclic
graph (CDAG): we have a vertex for each input, interme-
diate, and output argument, and edges according to di-
rect dependencies (e.g., for the binary arithmetic operation
x := y + z we have directed edges from vertices correspond-
ing to operands y and z to the vertex corresponding to x).

In the sequential case, an implementation (or scheduling)
determines the order of execution of the arithmetic opera-
tions, which respects the partial ordering of the CDAG. In
the parallel case, an implementation determines which arith-
metic operations are performed by which of the p processors
as well as the ordering of local operations. This corresponds
to partitioning the CDAG into p parts. Edges crossing be-
tween the various parts correspond to arguments that are in
the possession of one processor but are needed by another
processor and therefore relate to communication.

3.2 Edge Expansion
Expansion is a graph-theoretic concept [19] that relates a

given subset of a graph to its boundary. If a graph has large
expansion, then subsets of vertices will have relatively large
boundaries. For example, a 2D grid where each vertex has
north, south, east, and west neighbors has small expansion,
whereas a complete graph has large expansion. While there
are several variants of expansion metrics, we are interested
in edge expansion of regular graphs, defined as follows: the
edge expansion h(G) of a d-regular undirected graph G =
(V,E) is:

h(G) ≡ min
U⊆V,|U|≤|V |/2

|EG(U, V \ U)|
d · |U | (1)

where EG(A,B) is the set of edges connecting the disjoint
vertex sets A and B.

Note that CDAGs are typically not regular. If a graph
G = (V,E) is not regular but has a bounded maximal degree
d, then we can add (< d) loops to vertices of degree < d,
obtaining a regular graph G′. We use the convention that
a loop adds 1 to the degree of a vertex. Note that for any
S ⊆ V , we have |EG(S, V \S)| = |EG′(S, V \S)|, as none of
the added loops contributes to the edge expansion of G′.

For many graphs, small sets have larger expansion than
larger sets. Let hs(G) denote the edge expansion of G for
sets of size at most s:

hs(G) ≡ min
U⊆V,|U|≤s

|EG(U, V \ U)|
d · |U | . (2)

For many interesting graph families (including Strassen’s
CDAG), hs(G) does not depend on |V (G)| when s is fixed,
although it may decrease when s increases.

3.3 The Partition Argument
The high-level lower bound argument is based on parti-

tioning the execution of an algorithm’s implementation into
segments. Let O be any total ordering of the vertices that
respects the partial ordering of the CDAG G, i.e., all the
edges are directed upwards in the total order. This total
ordering can be thought of as the actual order in which the
computations are performed. Let P be any partition of V
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Figure 4: A subset (segment) S and its correspond-
ing read operands RS, and write operands WS.

into segments S1, S2, ..., so that a segment Si ∈ P is a subset
of the vertices that are contiguous in the total ordering O.

Let S be some segment, and define RS and WS to be the
set of read and write operands, respectively (see Figure 4).
Namely, RS is the set of vertices outside S that have an edge
going into S, and WS is the set of vertices in S that have an
edge going outside of S. Recall that M is the size of the fast
memory. Then the total communication cost due to reads
of operands in S is at least |RS | −M , as at most M of the
needed |RS | operands are already in fast memory when the
segment starts. Similarly, S causes at least |WS |−M actual
write operations, as at most M of the operands needed by
other segments are left in the fast memory when the segment
ends. The total communication cost is therefore bounded
below by

IO ≥ max
P

∑
S∈P

(|RS |+ |WS | − 2M) . (3)

3.4 Edge Expansion and Communication
Consider a segment S and its read and write operands RS

and WS (see Figure 4). If the graph G containing S has
h(G) edge expansion, maximum degree d and at least 2|S|
vertices, then (using the definition of h(G)), we have

Claim 4. |RS |+ |WS | ≥ h(G) · |S| .

Combining this with (3) and choosing to partition V into
|V |/s segments of equal size s, we obtain: IO ≥ maxs(|V |/s)·
(h(G) · s − 2M) = Ω(|V | · h(G)). In many cases h(G) is
too small to attain the desired communication cost lower
bound. Typically, h(G) is a decreasing function of |V (G)|;
that is, the edge expansion deteriorates with the increase of
the input size and number of arithmetic operations of the
corresponding algorithm (this is the case with Strassen’s al-
gorithm). In such cases, it is better to consider the expansion
of G on small sets only: IO ≥ maxs(|V |/s)·(hs(G) · s−2M).
Choosing the minimal s so that

hs(G) · s ≥ 3M (4)

we obtain

IO ≥ |V |
s
·M . (5)
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Figure 5: Computation graph of Strassen’s algo-
rithm for multiplying 2 × 2 matrices (H1). The en-
codings of A and B correspond to the additions and
subtractions in lines 4-10 of Algorithm 3, and the
decoding of the seven multiplications to compute C
correspond to lines 11-14. A vertex labeled with two
indices ij corresponds to the (i, j)th entry of a matrix
and a vertex labeled with one index k corresponds
to the kth intermediate multiplication.

The existence of a value s ≤ |V |/2 that satisfies condition (4)
is not always guaranteed. In [10] we confirm the existence
of such s for Strassen’s CDAG for sufficiently large |V |.

4. STRASSEN’S CDAG
Recall Strassen’s algorithm for matrix multiplication and

consider its computation graph. If we let Hi be the compu-
tation graph of Strassen’s algorithm for recursion of depth i,
then Hlog2 n corresponds to the computation for input ma-
trices of size n × n. Let us first consider H1 as shown in
Figure 5, which corresponds to multiplying 2 × 2 matrices.
Each of A and B are “encoded” into seven pairs of multi-
plication inputs, and vertices corresponding to the outputs
of the multiplications are then “decoded” to compute the
output matrix C.

The general computation graph Hlog2 n has similar struc-
ture:

• Encode A: generate weighted sums of elements of A

• Encode B: generate weighted sums of elements of B

• Multiply the encodings of A and B element-wise

• Decode C: take weighted sums of the products

Denote by Enclog2 nA the part of Hlog2 n that corresponds
to the encoding of matrix A. Similarly, Enclog2 nB, and
Declog2 nC correspond to the parts of Hlog2 n that compute
the encoding of B and the decoding of C, respectively. Fig-
ure 6 shows a high level picture of Hlog2 n. In the next section
we provide a more detailed description of the CDAG.

4.1 Recursive Construction
We construct the computation graph Hi+1 by construct-

ing Deci+1C from DeciC and Dec1C, similarly constructing
Enci+1A and Enci+1B, and then composing the three parts
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Figure 6: High-level view of Strassen’s CDAG for n×
n matrices. The graph is composed of two encoding
subgraphs and one decoding subgraph; connections
between the subgraphs are not shown.

together. Here is the main idea for recursively constructing
Deci+1C which is illustrated by Figure 7.

• Replicate Dec1C 7i times.

• Replicate DeciC 4 times.

• Identify the 4·7i output vertices of the copies of Dec1C
with the 4 · 7i input vertices of the copies of DeciC:

– Recall that each Dec1C has four output vertices.

– The set of each first output vertex of the 7i Dec1C
graphs is identified with the set of 7i input ver-
tices of the first copy of DeciC.

– The set of each second output vertex of the 7i

Dec1C graphs is identified with the set of 7i input
vertices of the second copy of DeciC. And so on.

– We make sure that the jth input vertex of a copy
of DeciC is identified with an output vertex of
the jth copy of Dec1C.

After constructing Enci+1A and Enci+1B in a similar man-
ner, we obtain Hi+1 by connecting edges from the kth output
vertices of Enci+1A and Enci+1B to the kth input vertex
of Deci+1C, which corresponds to the element-wise scalar
multiplications.

4.2 Strassen’s Edge Expansion
Given the construction of the CDAG for Strassen’s algo-

rithm, we now state our main lemma on the edge expansion
of the decoding graph. The proof technique resembles the
expander analysis in [2]. For the complete proof, see [10].

Lemma 5. (Main lemma) The edge expansion of DeckC
is

h(DeckC) = Ω

((
4

7

)k
)
.

By another argument (proof in [10]) we obtain that

hs(Declog2 nC) ≥ h(DeckC),

where s = Θ(7k). Choosing s = Θ(M (log2 7)/2), we satisfy
Inequality 4 and obtain Inequality 5 (for sufficiently large
|V |). This gives Theorem 1.

… 

DeciC 

Dec
1 C 

Figure 7: Illustration of the recursive construction
of the decoding subgraph. To construct Deci+1C,
DeciC is replicated 4 times and Dec1C is replicated
7i times, and appropriate vertices are identified.

5. EXTENSIONS
In this paper, we focus on lower bounds for Strassen’s

matrix multiplication algorithm on two machine models.
However, the design space of improving fundamental algo-
rithms via communication minimization is much larger. It
includes proving lower bounds and developing optimal al-
gorithms; using classical methods as well as fast algorithms
like Strassen’s; performing matrix multiplication, other ma-
trix algorithms, and more general computations; minimizing
time and/or energy; using minimal memory or trading off ex-
tra memory for less communication; and using hierarchical,
homogeneous, or heterogeneous sequential and parallel mod-
els. In this section we discuss a subset of these extensions;
see [9, 10] and the references therein for more details.

5.1 Lower Bounds
The proof technique described in Section 3 is not specific

to Strassen’s algorithm and can be applied more widely. The
partition argument is used for classical algorithms in numer-
ical linear algebra [8, 20] where a geometric inequality spec-
ifies the per-segment communication cost rather than edge
expansion. Further, the edge expansion technique applies to
Strassen-like algorithms that also multiply square matrices
with o(n3) arithmetic operations, to other fast algorithms
for rectangular matrix multiplication, and to other matrix
computations.

5.1.1 Strassen-like Algorithms
Strassen-like algorithms are recursive matrix multiplica-

tion algorithms based on a scheme for multiplying k×k ma-
trices using q scalar multiplications for some k and q < k3

(so that the algorithm performs O(nω0) flops where ω0 =
logk q.) For the latest bounds on the arithmetic complexity
of matrix multiplication and references to previous bounds,
see [25]. For our lower bound proof to apply, we require
another technical criterion for Strassen-like algorithms: the
decoding graph must be connected. This class of algorithms
includes many (but not all) fast matrix multiplications. For
details and examples, see [7, 10].

For Strassen-like algorithms, the statements of the com-
munication lower bounds have the same form as Theorem 1,
Corollary 2, and Theorem 3: replace log2 7 with ω0 ev-
erywhere it appears! The proof technique follows that for
Strassen’s algorithm. While the bounds for the classical al-



gorithm have the same form, replacing log2 7 with 3, the
proof techniques are quite different [18, 20].

5.1.2 Fast Rectangular Matrix Multiplication
Many fast algorithms have been devised for multiplication

of rectangular matrices (see [7] for detailed list). A fast al-
gorithm for multiplying m×k and k×r matrices in q < mkr
scalar multiplications can be applied recursively to multiply
mt × kt and kt × rt matrices in O(qt) flops. For such algo-
rithms, the CDAG has very similar structure to Strassen and
Strassen-like algorithms for square multiplication in that it
is composed of two encoding graphs and one decoding graph.
Assuming that the decoding graph is connected, the proofs
of Theorem 1 and Lemma 5 apply where we plug in mr and
q for 4 and 7. In this case, we obtain a result analogous
to Theorem 1 which states that the communication cost of
such an algorithm is given by Ω(qt/M logmr q−1). If the out-
put matrix is the largest of the three matrices (i.e., k < m
and k < r), then this lower bound is attained by the natural
recursive algorithm and is therefore tight. The lower bound
extends to the parallel case as well, analogous to Corollary 2,
and can be attained using the algorithmic technique of [6].

5.1.3 The Rest of Numerical Linear Algebra
Fast matrix multiplication algorithms are basic building

blocks in many fast algorithms in linear algebra, such as
algorithms for LU, QR, and eigenvalue and singular value
decompositions [13]. Therefore, communication cost lower
bounds for these algorithms can be derived from our lower
bounds for fast matrix multiplication algorithms. For ex-
ample, a lower bound on LU (or QR, etc.) follows when
the fast matrix multiplication algorithm is called by the LU
algorithm on sufficiently large submatrices. This is the case
in the algorithms of [13], and we can then deduce matching
lower and upper bounds [10].

5.1.4 Nested Loops Computation
Nearly all of the arguments for proving communication

lower bounds are based on establishing a relationship be-
tween a given set of data and the amount of useful compu-
tation that can be done with that data, a so-called “surface-
to-volume” ratio. For example, Hong and Kung [18] use
an analysis of dominator sets and minimal sets of CDAGs
to establish such ratios. The Loomis-Whitney geometric
inequality is applied for this purpose to matrix computa-
tions specified by three nested loops in [8, 20]. Recently,
Christ et al. [12] have extended this analysis using a gen-
eralization of the Loomis-Whitney inequality, known as the
Hölder-Brascamp-Lieb inequality, to prove lower bounds for
computations that are specified by an arbitrary set of nested
loops that linearly access arrays and meet certain other cri-
teria.

5.2 Algorithms
The main motivation for pursuing communication lower

bounds is to provide targets for algorithmic performance.
Indeed, the conjecture and proof of Theorem 1 and Corol-
lary 2, as well as the existence of an optimal algorithm in
the sequential case, were the main motivations for improving
the parallel implementations of Strassen’s algorithm. Not
only were we able to devise an optimal algorithm, but we
were able to show with an implementation for distributed-
memory machines that it performs much faster in practice

[6, 21].

5.2.1 Communication Avoiding Parallel Strassen
In Section 2.2 we stated the communication cost of a

new parallel algorithm for Strassen’s matrix multiplication,
matching the asymptotic lower bound. The details of the
algorithm appear in [6], and more extensive implementation
details and performance data are given in [21]. We show
that the new algorithm is more efficient than any other
parallel matrix multiplication algorithm of which we are
aware, including those that are based on the classical algo-
rithm and those that are based on previous parallelizations
of Strassen’s algorithm.

Figure 1 shows performance on a Cray XT4. For results
on other machines, see [21]. For example, running on a
Cray XE6 with up to 10,000 cores, for a problem of dimen-
sion n = 131712, our new algorithm attains performance as
high as 30% above the peak for classical matrix multiplica-
tion, 83% above the best classical implementation, and 75%
above the best previous implementation of Strassen’s algo-
rithm. Even for a small problem of dimension n = 4704,
it attains performance 66% higher than the best classical
implementation.

5.2.2 Further Applications
The key algorithmic idea in our parallel implementation

of Strassen’s algorithm is a careful parallel traversal of the
recursion tree. This idea works for many other recursive
algorithms where the subproblems do not have interdepen-
dencies (and it also works in some cases where dependencies
exist). For example, classical rectangular matrix multiplica-
tion [14] and sparse matrix-matrix multiplication [4] can be
parallelized in this way to obtain communication optimality.

The same techniques can be utilized to save energy at
the algorithmic level (since communication consumes more
energy than computation) as well as to obtain lower bounds
on energy requirements [15].

In summary, we believe this work flow of theoretical lower
bounds to algorithmic development to efficient implementa-
tions is very effective: by considering fundamental compu-
tations at an algorithmic level, significant improvements in
many applications are possible.
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[4] G. Ballard, A. Buluç, J. Demmel, L. Grigori,
B. Lipshitz, O. Schwartz, and S. Toledo.
Communication optimal parallel multiplication of
sparse random matrices. Technical Report
UCB/EECS-2013-13, University of California,
Berkeley, Feb 2013.

[5] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Brief announcement: Strong scaling of
matrix multiplication algorithms and
memory-independent communication lower bounds. In
Proceedings of the 24th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
’12, pages 77–79, New York, NY, USA, 2012. ACM.

[6] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Communication-optimal parallel
algorithm for Strassen’s matrix multiplication. In
Proceedings of the 24th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
’12, pages 193–204, New York, NY, USA, 2012. ACM.

[7] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Graph expansion analysis for
communication costs of fast rectangular matrix
multiplication. In G. Even and D. Rawitz, editors,
Design and Analysis of Algorithms, volume 7659 of
Lecture Notes in Computer Science, pages 13–36.
Springer Berlin Heidelberg, 2012.

[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast
matrix multiplication. In SPAA ’11: Proceedings of
the 23rd Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 1–12, New York,
NY, USA, 2011. ACM.

[9] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in numerical linear
algebra. SIAM Journal on Matrix Analysis and
Applications, 32(3):866–901, 2011.

[10] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast
matrix multiplication. J. ACM, 59(6):32:1–32:23, Dec.
2012.

[11] L. Cannon. A cellular computer to implement the
Kalman filter algorithm. PhD thesis, Montana State
University, Bozeman, MN, 1969.

[12] M. Christ, J. Demmel, N. Knight, T. Scanlon, and
K. Yelick. Communication lower bounds and optimal
algorithms for programs that reference arrays – Part I.

Manuscript, 2013.

[13] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear
algebra is stable. Numerische Mathematik,
108(1):59–91, 2007.

[14] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz,
O. Schwartz, and O. Spillinger.
Communication-optimal parallel recursive rectangular
matrix multiplication. In Proc. 27th IEEE
International Parallel & Distributed Processing
Symposium (IPDPS). IEEE, 2013. To appear.

[15] J. Demmel, A. Gearhart, B. Lipshitz, and
O. Schwartz. Perfect strong scaling using no additional
energy. In Proc. 27th IEEE International Parallel &
Distributed Processing Symposium, IPDPS ’13. IEEE,
2013. To appear.

[16] S. H. Fuller and L. I. Millett, editors. The Future of
Computing Performance: Game Over or Next Level?
The National Academies Press, Washington, D.C.,
2011. 200 pages, http://www.nap.edu.

[17] S. L. Graham, M. Snir, and C. A. Patterson, editors.
Getting up to Speed: The Future of Supercomputing.
Report of National Research Council of the National
Academies Sciences. The National Academies Press,
Washington, D.C., 2004. 289 pages,
http://www.nap.edu.

[18] J. W. Hong and H. T. Kung. I/O complexity: The
red-blue pebble game. In STOC ’81: Proceedings of
the thirteenth annual ACM Symposium on Theory of
Computing, pages 326–333, New York, NY, USA,
1981. ACM.

[19] S. Hoory, N. Linial, and A. Wigderson. Expander
graphs and their applications. Bulletin of the AMS,
43(4):439–561, 2006.

[20] D. Irony, S. Toledo, and A. Tiskin. Communication
lower bounds for distributed-memory matrix
multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[21] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz.
Communication-avoiding parallel Strassen:
Implementation and performance. In Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12,
pages 101:1–101:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[22] W. F. McColl and A. Tiskin. Memory-efficient matrix
multiplication in the BSP model. Algorithmica,
24:287–297, 1999. 10.1007/PL00008264.

[23] E. Solomonik and J. Demmel. Communication-optimal
parallel 2.5D matrix multiplication and LU
factorization algorithms. In Euro-Par ’11: Proceedings
of the 17th International European Conference on
Parallel and Distributed Computing. Springer, 2011.

[24] V. Strassen. Gaussian elimination is not optimal.
Numer. Math., 13:354–356, 1969.

[25] V. V. Williams. Multiplying matrices faster than
Coppersmith-Winograd. In Proceedings of the 44th
Symposium on Theory of Computing, STOC ’12, pages
887–898, New York, NY, USA, 2012. ACM.


