Scalable Bootstrapping for Python

Peter Birsinger
UC Berkeley

ABSTRACT

High-level productivity languages such as Python, Matlab,
and R are popular choices for scientists doing data analysis.
However, for today’s increasingly large datasets, applica-
tions written in these languages may run too slowly, if at all.
In such cases, an experienced programmer must typically
rewrite the application in a less-productive performant lan-
guage such as C or C++4, but this work is intricate, tedious,
and often non-reusable. To bridge this gap between pro-
grammer productivity and performance, we extend an ex-
isting framework that uses just-in-time code generation and
compilation. This framework uses the SEJITS methodol-
ogy, (Selective Embedded Just-In-Time Specialization [11]),
converting programs written in domain-specific embedded
languages (DSELS) to programs in languages suitable for
high performance or parallel computation.

We present a Python DSEL for a recently developed, scal-
able bootstrapping method; the DSEL executes efficiently
in a distributed cluster. In previous work [16], Prasad et al.
created a DSEL compiler for the same DSEL (with minor
differences) to generate OpenMP or Cilk code. In this work,
we create a new DSEL compiler which instead emits code to
run on Spark [18], a distributed processing framework. Us-
ing two example applications of bootstrapping, we show that
the resulting distributed code achieves near-perfect strong
scaling from 4 to 32 eight-core computers (32 to 256 cores)
on datasets up to hundreds of gigabytes in size. With our
DSEL, a data scientist can write a single program in serial
Python that can run “toy” problems in plain Python, non-
toy problems fitting on a single computer in OpenMP or
Cilk, and non-toy problems with large datasets on a multi-
computer Spark installation.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming; D.3.2 [Programming Lan-
gauges|: Language Classifications—concurrent, distributed,
and parallel languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CIKM’13, Oct. 27-Nov. 1, 2013, San Francisco, CA, USA.

Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505630.

Richard Xia
UC Berkeley
peterbir@eecs.berkeley.edu rxia@eecs.berkeley.edu

Armando Fox
UC Berkeley

fox@cs.berkeley.edu

Keywords
Domain-specific languages; SEJITS; bootstrapping

1. INTRODUCTION

Domain scientists create applications more quickly when
using high-level languages such as Python and Matlab, but
often must re-write their code in more efficient languages
such as C++ and CUDA to obtain the performance they
need, or to make use of a dataset too large to fit on a single
computer. In other words, they must select between pro-
grammer productivity and application performance. Along-
side performance, application scalability is a primary con-
cern with today’s growing datasets. While some cluster com-
puting frameworks now have a programming interface to a
productivity language (e.g. Hadoop with R [3], Spark with
Python [17]), this does not relieve programmers of rewriting
their application to fit the system’s API, or the strengths
and weaknesses of the distributed hardware platform.

An existing collection of tools, Selective Embedded Just-
In-Time Specialization (SEJITS) [12], bridges this gap be-
tween performance and productivity with a methodology
for extending productivity languages such as Python with
Domain-Specific Embedded Languages (DSELs). A pro-
grammer experienced in writing high-performance, parallel
code in a lower-level language first designs a DSEL to ex-
press a particular problem type or computational pattern.
The programmer then uses code-generation and templat-
ing techniques to create a just-in-time (JIT) compiler for
the DSEL whose output code targets parallel or distributed
hardware. The Asp framework [11] (a recursive acronym for
“Asp is SEJITS for Python”) provides facilities for embed-
ding such DSELs into Python and for creating the compilers
themselves in Python; thus, the DSEL is defined as a sub-
set of Python and appears to application programmers as
a Python class. Because these DSEL compilers only target
a single type of computation, and because they can be ex-
pressed in Python themselves, they are much smaller and
less complex than standard compilers, typically a few hun-
dred lines of code, despite being able to perform sophisti-
cated optimizations.

Once the DSEL compiler is created, application writers
never leave the world of Python. Their code written in the
DSEL is JIT-compiled, and the resulting output code is dy-
namically linked to the application at runtime. To the do-
main scientist, the experience is that the Python program
simply runs faster, and may even benefit from performance
portability, if the DSEL compiler can generate code for dif-
ferent hardware targets from the same DSEL.

We present a Python-embedded DSEL for the Bag of Lit-
tle Bootstraps (BLB) algorithm [13, 14], along with a DSEL
compiler to generate distributed BLB applications. Like the
standard bootstrap, BLB quantifies the uncertainty of a sta-
tistical function’s estimate, but the algorithm’s structural
properties lend themselves to parallelization and distributed
computation. Previously, a nearly identical DSEL was cre-
ated in Python for BLB using the SEJITS methodology,
along with a compiler for the DSEL which generates high-
performance C++ with either OpenMP or Cilk [16]. Here,
we augment the existing Asp framework to create a new
DSEL compiler that allows programs written in the same
BLB DSEL to run efficiently on the Spark cluster comput-
ing system [18]. We explore two diverse real-life applications
which testify to the scalabilty of the generated distributed
code.

The benefits of our work are threefold. First, a data sci-
entist can write a program in simple sequential Python code
that can operate across hundreds of cores and hundreds of
gigabytes of data. Second, because our DSEL is almost iden-
tical to the one consumed by the existing DSEL compiler
that targets a single multicore computer [16], the same ap-
plication can run efficiently on smaller datasets that fit on
a single computer by exploiting multicore parallelism. (Fu-
ture work would allow the Asp framework to automatically
select either the multicore or Spark hardware target depend-
ing on hardware availability and dataset size.) Finally, our
extensions to Asp that enable generation and execution of
Spark code serve as a guide to efficiency programmers for
creating DSELs for alternate computational patterns and
for targeting DSELs to other distributed computing envi-
ronments such as Map-Reduce.

2. A DSEL FOR BLB

BLB, similar to the classical bootstrap, quantifies uncer-
tainty on a statistical estimate, but is better suited for a
distributed implementation due to its structure. From the
input data of size n, it samples without replacement sub-
samples of size n” for typically 0.5 < v < 0.9. This results
in a relatively small number of unique points per subsample
compared to the total input size n. From each subsample,
bootstraps of size n are sampled with replacement, and the
statistical estimator function is computed on each bootstrap.
The differences between the estimates made on the boot-
straps for each subsample are quantified, typically with a
standard deviation or variance calculation. The algorithm’s
output is the average of the error measurements on each of
the subsamples.

The following parameters are needed to specify a BLB
problem instance:

1. number of subsamples, number of bootstraps, and a
subsample size exponent 7, a real number

2. statistical estimator function, a Python function that
can use a specific subset of the Python language

3. a reducer function, similarly

4. a specification of the target execution environment:
plain Python, Cilk on a multicore computer, OpenMP
on a multicore computer, or Spark on a cluster of com-
puters

compute_estimate()

std_dev)

Subsample (size N')

compute_estimate()

o]
2

compute_estimate()

Subsample (size N') std_dev()

Bootstrap(size N) compute_estimatel)

Figure 1: Workflow of BLB. Subsamples are sub-
sampled without replacement, while bootstraps are
drawn with replacement.

5. aset of input data: for Spark, this is specified by a Uni-
versal Resource Identifier (URI) for the Hadoop Dis-
tributed Filesystem (HDFS) which is used by Spark;
for OpenMP or Cilk, a filename.

Our DSEL provides a compact interface in Python to spec-
ify these parameters, some of which are set to reasonable
defaults if unspecified. The application writer subsets our
Python BLB class and defines the estimator and reducer
functions using a modest subset of Python, shown in Figure
2. A formal description of the distributed backend’s DSEL
can be found in the appendix, but generally the DSEL pro-
vides enough mathematical operations and control flow for
most statistical estimator functions. Due to Scala’s static
typing, the argument and return types of the estimator and
reducer functions must be explicitly specified, something not
usually required in Python programs. The application writer
does this by setting an instance variable in the BLB class
that specifies the type information. Note that the limited
subset of Python must be respected only within the estima-
tor and reducer functions; the remainder of the application
can use the full Python language.

e Control: for, while, if
e Common arithmetic, binary, and boolean operations
e Variable declarations

e Basic array and string operations: len, range, zip,
split. However, all objects in a Python array must
be of the same type, because the Scala code generator
treats Python lists and tuples as Scala arrays.

e Conversion among integers, strings and floats

Figure 2: Informal description of the subset of
Python available for expressing the estimator and
reducer functions.

We also provide a Scala library with several common sta-
tistical functions that can be named directly from Python:
standard deviation, mean, and dot product. Additionally,
since BLB applications often involve machine learning, we
include a feature vector class, a compressed feature vector

class, and functions to construct these classes from input
feature vectors in String format.

The data scientist specifies the input data at runtime by
passing in the data file’s Hadoop Distributed File System
(HDFS) URL This allows our generated code to operate on
files too large to fit on a single node. Supplementary files
needed for the computation (e.g. machine learning models)
can additionally be included, although these files are read
and stored locally, not in a distributed fashion, due to their
empirically smaller sizes.

Figure 3 shows an example instance of our BLB class
(without type declarations) where the estimator function
computes the sum of an array of numbers. This example,
aside from the extreme simplicity of the estimator function,
is representative of the code that the data scientist would
write in order to use our framework.

class SumVerifier(BLB):

TYPE_DECS =

([’compute_estimate’, [(’array’, ’double’)], ’double’],

[’reduce_bootstraps’, [(’array’, ’double’)],’double’],
[’average’, [(’array’, ’double’)], ’double’])

def compute_estimate(array):
sum = 0.0
for elem in array:
sum += elem
return sum

def reduce_bootstraps(bootstraps):
std_dev(bootstraps)

def average(subsamples):
mean (subsamples)

Figure 3: Example BLB application to quantify er-
ror, in terms of standard deviation, of the sum of an
array of numbers.

To summarize, our DSEL allows data scientists to use
Python to express a variety of BLB problem instances that
can be run as distributed computations across hundreds of
cores. We next describe how this DSEL is compiled and the
resulting Spark program in Scala is executed.

3. A SEJITS COMPILER FOR THE BLB
DSEL

Using the SEJITS approach, we create a JIT compiler for
the BLB DSEL by extending the existing Asp infrastruc-
ture. The compiler maps a Python BLB instance to a Scala
BLB instance suitable to run on at least tens of nodes on
the Spark cluster computing system. Spark is similar to
Map-Reduce, but performs significantly better on iterative
algorithms [18] and uses Scala as the main client-side lan-
guage.

We contribute an efficient, Scala Spark implementation of
the common elements of BLB to encapsulate the data sci-
entist’s estimator and reducer functions. Our hand-crafted
code reads the input data from HDFS, forms the subsam-
ples and bootstraps, and calls the estimator and reducer
functions.

Our distributed implementation of BLB can accomodate a
variety of problem types by performing several optimizations
transparently to the application writer:

e To allow utilizing large numbers of cores, we parallelize
across bootstrap estimate computations, rather than
across subsample error estimate computations.

e We replace the standard Java serialization used by
Scala with Kryo serialization [6], which is both faster
and produces a more compact data representation (up
to a factor of 10 smaller [7]).

e We store the intermittent computations in serialized
form, which requires more CPU but gives better results
on large datasets since more objects can be stored in
the cache.

e We automatically select the level of parallelism (num-
ber of Spark tasks for a BLB instance) based on the
number of nodes in a cluster and the number of cores
in each node, opting for double the number of cores in
the cluster.

e We broadcast to all nodes at the start of the com-
putation any subsidiary data that is not part of the
dataset but which is needed for the computation, such
as machine learning models. This can reduce the size
of serialized tasks as well as the cost of starting a job
[10].

The DSEL compiler combines this “boilerplate” code with
Scala code generated from the data scientist’s input esti-
mator and reducer functions. Exercising Python’s reflection
capacities, we parse the estimator and reducer functions’
Python Abstract Syntax Trees (ASTs) to convert them to
Scala ASTs. The DSEL compiler performs minor optimiza-
tions on the Scala ASTs, such as converting for-loops to
while-loops, which can greatly improve performance [9, 1].
Finally, the compiler generates optimized Scala code from
the optimized Scala ASTs to fill in the hand-coded, BLB
Scala skeleton.

JIT Compilation

Python AST

Application '
Spark BLB

BLB.py I Scala AST
Template
BLB.scala

Data Serialization

Hand-Tuned

g' Spark

Figure 4: BLB DSEL compiler workflow. The
Python BLB application is used to generate Scala
code, which when combined with our hand-tuned
Spark BLB template, forms a BLB application
runnable in a distributed setting on Spark.

Hardware Target

The DSEL compiler then packages the complete Scala
program inside a Scala object, automatically generating the
main() method based on the input Python arguments. After
runtime compilation with the Scala compiler’s optimization
flag set, Asp initializes Spark to run on the Scala object by a
shell command. Meanwhile, the DSEL compiler stores and
tracks compiled DSEL programs so that identical code need
not be compiled repeatedly when the application is re-run.

The input arguments for BLB, namely the HDFS URI
of the data file, along with the BLB sampling parameters
(and possibly the URI of a machine learning model or other
supplementary data), are passed from Python to Scala using
Apache Avro serialization [2]. After the distributed Scala
BLB app runs on the input data from HDFS, the results are
returned to Python via Avro once more.

We have supplied Asp with the infrastructure to generate
Scala code, initialize Spark, and pass data between Python
and Scala. Further details of Asp, in particular how it han-
dles C++, are covered in [12].

4. EVALUATION

We have examined two diverse applications of BLB, one
relating to machine learning and one involving the Google N-
gram dataset. These applications demonstrate not only the
ability of our generated code to scale well on large datasets,
but also the breadth of statistical computation that can be
expressed with our DSEL.

4.1 Email Classifier

We evaluate estimates of a classifier’s accuracy on the
publicly available Enron email corpus, consisting of approx-
imately 1.2 million emails [15]. We classify emails based
on their user defined directory name (e.g. Inbox, Sent, Va-
cation), and select for each email the most probable class
it belongs to. To improve classification efficiency, we take
only emails in the top twenty directories, still preserving
over 90% of the original dataset. For each email, we create
a feature vector using a bag-of-words model; each word de-
notes a feature and the number of occurrences of that word
in the email is the feature’s weight. Each feature vector is
then of length 139,578, the number of words in the entire
corpus. Since most emails contain a very small fraction of
the total words, we store each email as a compressed feature
vector with two arrays, one for the indices, and one for the
non-zero feature weights. We create the machine learning
models for our classifier using a Support Vector Machine
(SVM) multi-class library [8].

We attempt to estimate the classifier’s performance on the
entire 1.2 million emails (apart from 10% which we use as
training data) by calculating its accuracy rate on a subset of
size roughly 20% (215,000 emails) of the original corpus. We
run BLB on the 20% subset as well to estimate how widely
the exact error rate on the entire corpus varies from our es-
timate of it based on the classifier’s performance on the sub-
set. The actual classification error rate on the entire corpus
is 67.74%, while it is only 67.70% on the subset. With the
settings of 25 subsamples, 50 bootstraps, and a subsample
exponent v of .7, BLB consistently predicts that the error
rate on the entire corpus varies with about a .10% standard
deviation from the estimate on the subsample. Considering
that the two estimates were only .04% apart, this estimate
appears reasonable. Through empirical evidence, we found

Strong Scaling with Spark & OpenMP
Cores Used with OpenMP e Spark N-

10 15 20 25 30 35 Gram
d Actual

)
«

e
>
2

© o © Spark N-
Gram
Ideal

0.009
0.008

0.007 s=tr=Spark
Email

0.006 Actual

0.005 e Spark
Email
Ideal

0.004

0.003

== OpenMP
Email
Actual

0.002

Normalized Performance (1/sec)

0.001
> OpenMP
Email
Ideal

300

Cores Used with Spark

Figure 5: Spark strong scaling results on 32, 64,
128, and 256 cores (4-32 Amazon EC2 m2.4xlarge
nodes) on 103,576,600 (34 GB) emails from the En-
ron email corpus and on 201GB of N-Grams. Also
shown are OpenMP scaling results on 126,000 Enron
emails obtained from 4 Intel X7560 processors[16].

that the aforementioned sampling parameters were ample to
obtain an accurate answer.

The estimator function, as seen in Figure 7, consists of
roughly 20 lines of Python, containing a doubly nested for
loop and a dot product. The reducer functions, standard
deviation and mean, simply call the provided Scala library.

To test the scaling properties of the generated code, we
duplicate the entire test data set one hundred fold to create
34 GB of email data. We rent Amazon EC2’s high memory
quadruple extra large instances, each with 8 cores, to form
clusters of 4, 8, 16, and 32 slave nodes. We run BLB with the
same sampling parameters of 25 subsamples, 50 bootstraps,
and a subsample exponent v of .7.

Between 4 and 8 nodes, we witness in Figure 5 super-linear
scaling as larger numbers of nodes allow more of the dataset
and intermittent computations to be stored in memory, as
opposed to disk. Near perfect scaling occurs across 8 and
16 nodes. Between 16 and 32 nodes though, we experience
moderately sub-linear scaling as a result of dwindling paral-
lelism across 256 cores, but still the completion time for 32
nodes is 10.47 times less than the 4 node result.

For data sets able to fit on a single node, particularly
one with many cores, however, the generated OpenMP and
Cilk code run more efficiently than the Spark code. Al-
though lacking formal verification, this presumably results
from the increased inter-node communication costs of dis-
tributed computation. Prasad et. al previously evaluated
the generated OpenMP on 126,000 (three orders of magni-
tude fewer) emails with a nearly identical estimator function
and achieved near perfect speedup on a 32-core CPU as seen
in Figures 5 and 6. [16]. These results demonstrate the large
scalability of our generated code on varying input data sizes.

4.2 N-Gram Word Frequency

We next utilize the Google n-gram [5] dataset to evalu-
ate the calculation of the top ratios of 2-gram occurrence
frequencies between decades in the English language. This
statistic highlights the decades during which new phrases
came into popularity the most rapidly. We calculate for
each 2-gram the ratio of its frequency in the current decade
and in the previous decade and then take the top 10,000 of

Data Type | Dataset Size | # Subsamples | # Bootstraps | v | Cores used | Speedup | Platform | Lines of Python
emails 34 GB 25 50 0.7 32-256 1.31x Spark 24
emails 41MB 25 40 0.7 1-32 0.988x | OpenMP 26

n-grams 201 GB 25 100 0.5 32-256 0.816x Spark 85

Figure 6: Experiments using BLB for email classifier evaluation and n-gram frequency estimation. For the
email corpus, we estimate the dataset size based on the number of emails; we report the size of the feature
vectors in compressed format. The OpenMP result was reported in [16] and is presented here for comparison

only.

class SVMEmailVerifierBLB(BLB):

TYPE_DECS =

([’compute_estimate’,
[(’array’, ’CompressedFeatureVec’),
(’array’, (’array’, ’double’))],
’double’],

[’reduce_bootstraps’, [(’array’, ’double’)],’double’],
[’average’, [(’array’, ’double’)], ’double’])

def compute_estimate(feature_vecs, models):
errors = 0.0
num_feature_vecs = 0
for feature_vec in feature_vecs:
weight = feature_vec.weight
num_feature_vecs += weight
tag = feature_vec.tag
choice = 0
max_match = -1.0
for model in models:
total = dot(model, feature_vec)
if total > max_match:
choice = index() + 1
max_match = total
if choice != tag:
errors += weight
return errors / num_feature_vecs

def reduce_bootstraps(bootstraps):
std_dev(bootstraps)

def average(subsamples):
mean (subsamples)

Figure 7: BLB instance to evaluate estimates of an
email classifier’s performance. The Python applica-
tion is nearly identical for the OpenMP and Spark
DSELs.

these ratios for each decade (ignoring all 2-grams below a fre-
quency of .0001%). To improve bootstrapping accuracy, we
modify the original dataset so that each n-gram contains the
number of occurrences for every year, as opposed to having
each n-gram only contain the number of appearances for one
year. After filtering out all n-grams containing punctuation
or numbers, we are left with 92,290,642 n-grams totaling 38
GB.

The estimator function written in our DSEL performs
three nontrivial tasks. After computing the amount of 2-
grams in each decade, it uses priority queues, for which
equivalent Scala operations are generated, to find the top
10,000 2-gram ratios for each decade. It then averages these
10,000 ratios for each decade, and outputs the array. No-
tably, an array, as opposed to just a double, may be returned

from the estimator, reducer, or average function. The 75
lines of Python used for this statistical computation testify
to the large variety of applications our DSEL can support.

We evaluate BLB on a random 10% of our 2-gram dataset,
using BLB parameters of 30 subsamples, 40 bootstraps, and
a v of .85. We normalize every average decade ratio with
the 1900 ratio, dividing all other ratios by it. We notice
from the results that for all decades but 1910 and 1920,
the actual ratio was within one predicted standard devia-
tion. The standard deviations increase with later decades
because there are more 2-grams in later decades to choose
from for subsamples and bootstraps. Additionally, several
2-grams, primarily technology oriented ones such as “NET
Framework” and “Windows Server”, have enormous ratios
and their inclusion can largely skew a sample’s average ratio.
Interestingly, the highest ratios are 1990 and 2000, presum-
ably due to technology’s enormous growth, and additionally
1940 and 1950 presumably due to WWII.

Decade | Actual Ratio on BLB Std.
Ratio | 10% Subset | Deviation
1900 1 1 0
1910 1.112 1.585 0.213
1920 0.869 1.413 0.405
1930 1.239 1.252 0.469
1940 1.605 1.841 1.082
1950 1.713 1.341 0.699
1960 0.958 1.434 0.750
1970 1.098 1.459 0.606
1980 1.190 1.418 1.886
1990 1.730 2.008 3.373
2000 3.180 3.657 3.173

Figure 8: The actual average ratio of the top 10,000
2-grams’ occurrence frequency between each decade
and the previous one, in addition to these ratios on
a 10% subset and the BLB predicted standard devi-
ation.

To test the scaling properties of the generated Spark code,
we duplicate the dataset repeatedly to obtain 201GB of 2-
gram data. We run BLB with the sampling parameters of
25 subsamples, 100 bootstraps, and a subsample exponent
~v of .5. We select v to be .5 to lessen computation time;
increasing it would not worsen scaling, as easily partion-
able additional computational work would only be added.
As Figure 5 attests, we obtain close to perfect strong scal-
ing between 4 and 32 nodes (or 32 and 256 cores). We ran
these computations again on Amazon EC2’s high memory
quadruple extra large instances, each with 8 cores. Unfor-
tunately, we were not able to run this application with the

C++ DSEL compiler as it does not support several features
in the estimator function.

S. FUTURE WORK

Much further work can be done on our Spark BLB DSEL
compiler, in addition to testing it on more applications. In-
creasing the overlap between its DSEL and that of the C++
compiler’s DSEL is a prime goal. Furthermore, we hope that
later versions of our compiler can automatically determine
the optimal target backend (Spark, OpenMP, or Cilk) based
on the BLB instance’s properties, most particularly the size
of the input data.

The BLB and Spark parameters could similarly be auto-
tuned. The number of subsamples, bootstraps, and the sub-
sample exponent length could be automatically optimized
by the SEJITS framework to pinpoint the ideal intersection
of efficiency and accuracy for BLB.

Our current compiler only customizes a few of the Spark
default settings, and all statically except for the level of par-
allelism. This leaves room for much innovation. More gener-
ally, the type and number of EC2 instances recruited could
as well be dynamically computed based on computational
workload and a pricing budget.

Lastly, the Python and Scala ASTs could be optimized
based on runtime information regarding the input data or
the cluster being run on. Additionally, application level op-
timizations based on assumptions made from the constraints
on the DSEL could be made. Both of these kinds of opti-
mizations are displayed by already exisiting SEJITS DSEL
compilers [11, 4].

6. CONCLUSION

We have presented a DSEL and a matching compiler that,
in the context of the BLB, brings scalable data analysis to
Python. This work describes the construction of a DSEL
that executes efficiently both in a distributed setting and on
a single node. The two real-life applications we present at-
test to not only the scalability of the generated code, but also
to the breadth of applications that the DSEL can support.
The generated Spark code achieves near-perfect scaling on
hundreds of GBs of data with up to 256 distributed cores
across 32 nodes.

We created this DSEL compiler by broadening the already
existing Asp framework to enable the execution of Python
DSELs on the Spark cluster computing system. The shared
BLB DSEL between this DSEL compiler and a previously-
built DSEL compiler targeting OpenMP and Cilk facilitates
the generation of highly performant code for data ranging
from MBs to hundreds of GBs. This work demonstrates the
strength of the SEJITS approach, packaging the expertise
of performance programmers for wide reuse by productiv-
ity programmers, and suggests a means to create additional
DSELs for alternate computational patterns and hardware
platforms.

7. ACKNOWLEDGMENTS

Shoaib Kamil provided both valuable encouragement and
assistance writing the paper. Michael Driscoll, Ameet Tal-
walkar, and Yahel Ben David contributed helpful feedback
on the paper. Additionally, Ameet and Ariel Kleiner as-
sisted with the usage of the BLB algorithm. David Howard
and Aakash Prasad developed the OpenMP and Cilk BLB

DSEL compiler along with its original interface. Research
supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Dis-
covery (Award #DIG07-10227). Additional support comes
from Par Lab affiliates Nokia, NVIDIA, Oracle, and Sam-
sung. Research also funded by DARPA Award Number
HRO0011-12-2-0016. The content of this paper does not nec-
essarily reflect the position or the policy of the US govern-
ment and no official endorsement should be inferred.

8. REFERENCES

[1] 3 tips for writing performant scala.
http://wuw.sumologic.com/blog/technology/
3-tips-for-writing-performant-scala.

[2] Apache avro data serialization.
http://avro.apache.org/.

[3] Apache hadoop. http://hadoop.apache.org/.

[4] Asp specializers. https:
//github.com/shoaibkamil/asp/wiki/Specializers.

[5] Google n-gram dataset. http://storage.googleapis.
com/books/ngrams/books/datasetsv2.html.

[6] Kryo. https://code.google.com/p/kryo/.

[7] Kryo benchmarks. https:
//code.google.com/p/kryo/wiki/ViBenchmarks.

[8] Multi-class support vector machine. http:
//svmlight. joachims.org/svm_multiclass.html.

[9] Scala optimize simple for loops compiler issue.
https://issues.scala-lang.org/browse/SI-1338.

[10] Spark tuning guide. http:
//spark-project.org/docs/latest/tuning.html.

[11] S. Kamil, D. Coetzee, and A. Fox. Bringing parallel
performance to python with domain-specific selective
embedded just-in-time specialization. In Python for
Scientific Computing Conference (SciPy), 2011.

[12] S. A. Kamil. Productive High Performance Parallel
Programming with Auto-tuned Domain-Specific
Embedded Languages. PhD thesis, EECS Department,
University of California, Berkeley, Jan 2013.

[13] A. Kleiner, A. Talwalkar, P. Sarkar, and M. Jordan.
The big data bootstrap. arXiv preprint
arXiv:1206.6415, 2012.

[14] A. Kleiner, A. Talwalkar, P. Sarkar, and M. 1. Jordan.
A scalable bootstrap for massive data. arXiv preprint
arXw:1112.5016, 2011.

[15] B. Klimt and Y. Yang. The enron corpus: A new
dataset for email classification research. In Machine
Learning: ECML 2004, pages 217-226. Springer, 2004.

[16] A. Prasad, D. Howard, S. Kamil, and A. Fox. Parallel
high performance bootstrapping in python. In Proc.
Eleventh Annual Scientific Computing with Python,
2012.

[17] M. Zaharia. Spark overview. http:
//spark-project.org/docs/latest/index.html.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin,

S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages
10-10, 2010.

