Raven/Hurricane/Resiliency Tape-outs

12/5/2017
How can circuit designers and architects improve energy efficiency without transistor scaling?

- Fine-grained adaptive voltage scaling (AVS) maximizes energy efficiency
 - Fine-grained both spatially and temporally
- Looks beautiful on paper, but *many* issues
Key problems

- **Efficiency**: How do you actually reduce voltage while maintaining conversion efficiency?
- **Granularity**: How do you supply independent voltages to small spatial domains?
- **Control**: How do you decide when to change the voltage?
- **Reliability**: How do you keep the circuits working at low voltage?
- **Practicality**: Can you actually build it?
Why tape-out chips?

- Get papers into circuits conferences
- Bora already reserved X mm², so we better not embarrass him
- Ground research in reality
Simultaneous-Switching Switched-Capacitor DCDC

- Division of input voltage possible using on-chip capacitors and switches
- Adaptive clock tracks resulting ripple
Raven-3

- Novelty: 1st system with simultaneous-switching DCDC
- ST 28nm FDSOI, 2.5mm2
- RISC-V processor
- 1V, 0.9V, 0.67V, 0.5V modes 2nF of on-chip capacitance
- 34 double-precision floating point GFLOPS/W (26 with DCDC)
Strong foundation, start building a real system

- Could change voltage to track activity...but we are just changing it once and measuring
- Could do this for multiple cores...but we only have 1 core
- Could build an efficient processor...but fake memory system
Raven-4

- Novelty: Measure instantaneous power by counting the DCDC toggle frequency
- First Zscale processor as power management
- 28nm FD-SOI
- 3.03mm2 die area
- 54 GFLOPS/W
Hurricane-1

- Novelty: Two cores, faster memory system, counter-based power management
- 28nm FD-SOI
- 7.98mm2 die area
Hurricane-2

- Novelty: Separate voltage domains for Rocket and Hwacha
- Many micro-architectural counters
- Actual DDR PHY
- 28nm FD-SOI
- 17.30mm2 die area
Evolution of chips

Omnigraffle Figures
• Novelty: Avoid failing SRAM bitcells at low voltage
• RISC-V Rocket in-order processor+1MB L2 cache
• 2mm x 3mm TSMC 28nm
- Novelty: First BOOM core tape-out and line recycling for further Vmin reduction in L2
- TSMC 28nm
Come a long way in 6 years

- Raven-1:
 - May 2011
 - My first tape-out
 - Codename: Trainwreck
 - ‘Working’ RISC-V processor:

Yunsup Lee
yunsup@eecs.berkeley.edu

Good news. After setting the various voltages going to the SRAM, raven1 finally runs a very simple program. It can run the following program:

```
addi $x1, $x0, 1
mtpcr $x1, $cr16
1:      beq $x0, $x0, 1b
```
Lessons learned
(from Git commits)
Importance of typing accuracy

```
commit 34de19e39a243995070eadd248022cde6
Author: Ben Keller <bkeller@eecs.berkeley.edu>
Date:   Tue Sep 16 17:20:59 2014 -0700

    Fixing Brian's stupid typos
```

```
commit 946dfce27f913d9a7878115485a8ff0b8ad4f20
Author: Stevo Bailey <stevo.bailey@eecs.berkeley.edu>
Date:   Tue Oct 14 09:53:57 2014 -0700

    [stevo]: fixing carriage return in mikis block
```
Encourage good habits

commit 2b47309c0eedefe71c7c1d506091e5e0815b40f4
Author: Ben Keller <bkeller@eecs.berkeley.edu>
Date: Tue Mar 7 21:50:05 2017 -0800

Comment this out til I figure out what it does

commit 6d941d903cd4b67c24a2a30cebd83a83f6c01bb3
Author: John Wright <johnwright@eecs.berkeley.edu>
Date: Sun Mar 6 00:13:33 2016 -0800

Don't do that, it's bad. Don't be bad, be good.
Nothing is ever fixed on the first try

commit eb328afbb16ae097b152f9869b891574f2433506
Author: John Wright <johnwright@eecs.berkeley.edu>
Date: Wed Mar 2 16:28:36 2016 -0800

 really for real fix things this time

commit c2f4ff14fb0969607679945e6fdd884215058f14
Author: Yunsup Lee <yunsup@cs.berkeley.edu>
Date: Wed Nov 14 13:15:59 2012 -0800

 now it's actually fixed

commit b3a5e25f7c8295d6140cc1cb0bc0d8bc75388685
Author: Andrew Waterman <waterman@eecs.berkeley.edu>
Date: Sun Nov 25 19:46:48 2012 -0800

 fix D$ writeback bug
 I swear I did this last week... perhaps I am finally losing it!

commit 7fedd518515f1a3ee630fb44ba047eb11855889d
Author: Keertana Settaluri <ksettaluri6@berkeley.edu>
Date: Sun Nov 20 13:51:08 2016 -0800

 Dis pad frame. Last edit. Last commit. Plzzz
Always preemptively apologize

Commit e8ed04afec35f56b4cdc6bd201951032a6f1a84
Author: John Wright <johnwright@eecs.berkeley.edu>
Date: Wed Mar 1 20:33:55 2017 -0800

Wow this is such a hack

Commit c2fbed4b6b528e29f4e33ba84f5c25abad5c7af4
Author: Brian Zimmer <bmzimmer@eecs.berkeley.edu>
Date: Thu Oct 23 15:35:46 2014 -0700

added dcdc comparator clock tree...if I broke something I'll buy you a beer

Commit cc2e49f7d425fe3a9e8ce064921d2b04461c7d99
Author: Jaehwa Kwak <jhwak@bwrc.eecs.berkeley.edu>
Date: Tue Nov 11 20:33:17 2014 -0800

.... sorry...
Conclusion

- **Efficiency**: >85% conversion efficiency for 0.5V to 1V voltage range
- **Granularity**: Smaller than per-core DVFS
- **Control**: 100ns responses to change in activity
- **Reliability**: 25% Vmin reduction with < 2% area overhead
- **Practicality**: Agile hardware booting Linux with small team of graduate students
Acknowledgements

▪ Fabrication donation by STMicroelectronics and TSMC
▪ ASPIRE Members