
Instruction Sets Want to be Free!

Andrew Waterman
SiFive, Inc.

andrew@sifive.com

ASPIRE End of Project Celebration
December 5, 2017

mailto:andrew@sifive.com

Instruction Set Architectures don’t matter

Most of the performance and energy running software
on a computer is due to:
▪ Algorithms
▪ Application code
▪ Compiler
▪ OS/Runtimes
▪ ISA (Instruction Set Architecture)
▪ Microarchitecture (core + memory hierarchy)
▪ Circuit design
▪ Physical design
▪ Fabrication process
▪ In a system, there’s also displays, radios, DC/DC

converters, sensors, actuators, …

ISAs do matter

▪ Most important interface in computer system
▪ Large cost to port and tune all ISA-dependent parts

of a modern software stack
▪ Large cost to recompile/port/QA all supposedly

ISA-independent parts of stack
▪ If using proprietary closed-source, don’t have code
▪ Lost your own source code

▪ Most of the cost of developing a new chip is
developing software for it

So…

If choice of ISA doesn’t have much
impact on system energy/performance,
and it costs a lot to use different ones

Why isn’t there a free, open standard
ISA that everyone can use for
everything?

Universal ISA Requirements

 Works well with existing software stacks, languages
 Is native hardware ISA, not virtual machine/ANDF
 Suits all sizes of processor, from smallest

microcontroller to largest supercomputer
 Suits all implementation technologies, FPGA, ASIC,

full-custom, future device technologies…
 Efficient for all microarchitecture styles: in-order,

decoupled, out-of-order; sequential, superscalar
 Supports extensive specialization to act as base for

customized accelerators
 Stable: not changing, not disappearing

5

RISC-V Origin Story

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP

issues

RISC-V Origin Story

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP

issues

RISC-V Origin Story

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP

issues

RISC-V Origin Story

 So we started “3-month project” in summer 2010 to
develop our own clean-slate ISA

- Andrew Waterman, Yunsup Lee, Dave Patterson, Krste
Asanovic principal designers

 Four years later, we released frozen base user spec
- But also many tapeouts and several research publications

along the way

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP issues

Why are outsiders complaining about changes
to RISC-V in Berkeley classes?

What’s Different about RISC-V?

 Simple
- Far smaller than other commercial ISAs

 Clean-slate design
- Clear separation between user and privileged ISA
- Avoids µarchitecture or technology-dependent features

 A modular ISA
- Small standard base ISA
- Multiple standard extensions

 Designed for extensibility/specialization
- Variable-length instruction encoding
- Vast opcode space available for instruction-set extensions

 Stable
- Base and standard extensions are frozen
- Additions via optional extensions, not new versions

10

RISC-V Base Plus Standard Extensions
 Four base integer ISAs

- RV32E, RV32I, RV64I, RV128I
- RV32E is 16-register subset of RV32I
- Only <50 hardware instructions needed for base

 Standard extensions
- M: Integer multiply/divide
- A: Atomic memory operations (AMOs + LR/SC)
- F: Single-precision floating-point
- D: Double-precision floating-point
- G = IMAFD, “General-purpose” ISA
- Q: Quad-precision floating-point

 All the above are a fairly standard RISC encoding in a
fixed 32-bit instruction format
 Above user-level ISA components frozen in 2014

- Supported forever after 11

12

RV32I / RV64I / RV128I + M, A, F, D, Q, C
RISC-V “Green Card”

RISC-V Standard Base ISA Details

▪ 32-bit fixed-width, naturally aligned instructions
▪ 31 integer registers x1-x31, plus x0 zero register
▪ rd/rs1/rs2 in fixed location, no implicit registers
▪ Immediate field (instr[31]) always sign-extended
▪ Floating-point adds f0-f31 registers plus FP CSR, also

fused mul-add four-register format
▪ Designed to support PIC and dynamic linking

13

Variable-Length Encoding

 Extensions can use any multiple of 16 bits as
instruction length
 Branches/Jumps target 16-bit boundaries even in

fixed 32-bit base
- Consumes 1 extra bit of jump/branch address

14

“C”: Compressed Instruction Extension

▪ Compressed code important for:
- low-end embedded to save

static code space
- high-end commercial workloads

to reduce cache footprint
▪ C extension adds 16-bit compressed instructions

- 2-operand instructions only
- Most instructions can only access 8 registers

▪ 1 compressed instruction expands to 1 base instruction
▪ Assembly lang. programmer & compiler oblivious

▪ All original 32-bit instructions retain encoding but now
can be 16-bit aligned
 50%-60% instructions compress ⇒ 25%-30% smaller

15

100%

141%
131% 129%

169%

80%

100%

120%

140%

160%

180%

RV64C RV64 X86-64 ARMv8 MIPS64

64-bit Address

100%

140%
126%

136%

101%

173%

126%

80%

100%

120%

140%

160%

180%
32-bit Address

SPECint2006 compressed code size
with save/restore optimization

(relative to “standard” RVC)

 RISC-V now smallest ISA for 32- and 64-bit addresses

16

RISC-V Privileged Architecture

Modular design supports many classes of system
- Simple embedded systems with no protection
- Embedded systems with protection
- Unix-class systems with page-based virtual memory
- Hypervised Unix systems with two-level paging

17

RISC-V Foundation

 Mission statement
- “to standardize, protect, and promote the free and open

RISC-V instruction set architecture and its hardware and
software ecosystem for use in all computing devices.”

 Established as a 501(c)(6) non-profit corporation on
August 3, 2015
 Now >100 members
 10s of companies participating in standards definition

18

19

Foundation: 100+ Members

RISC-V Foundation

Summary: Why RISC-V?

 Free and open architecture, no proprietary lock-in
 Much simpler ISA than others
 Readily and freely extensible
 Usable as base ISA for every core on SoC

 RISC-V project goal: become the industry-standard ISA
for all computing devices

 Thank you for sponsoring this research!

Questions?
20

	Instruction Sets Want to be Free!
	Instruction Set Architectures don’t matter
	ISAs do matter
	So…
	Universal ISA Requirements
	RISC-V Origin Story
	RISC-V Origin Story
	RISC-V Origin Story
	RISC-V Origin Story
	What’s Different about RISC-V?
	RISC-V Base Plus Standard Extensions
	Slide Number 12
	RISC-V Standard Base ISA Details
	Variable-Length Encoding
	“C”: Compressed Instruction Extension
	SPECint2006 compressed code size�with save/restore optimization�(relative to “standard” RVC)
	RISC-V Privileged Architecture
	RISC-V Foundation
	Foundation: 100+ Members
	Summary: Why RISC-V?

