
Instruction Sets Want to be Free!

Andrew Waterman
SiFive, Inc.

andrew@sifive.com

ASPIRE End of Project Celebration
December 5, 2017

mailto:andrew@sifive.com

Instruction Set Architectures don’t matter

Most of the performance and energy running software
on a computer is due to:
▪ Algorithms
▪ Application code
▪ Compiler
▪ OS/Runtimes
▪ ISA (Instruction Set Architecture)
▪ Microarchitecture (core + memory hierarchy)
▪ Circuit design
▪ Physical design
▪ Fabrication process
▪ In a system, there’s also displays, radios, DC/DC

converters, sensors, actuators, …

ISAs do matter

▪ Most important interface in computer system
▪ Large cost to port and tune all ISA-dependent parts

of a modern software stack
▪ Large cost to recompile/port/QA all supposedly

ISA-independent parts of stack
▪ If using proprietary closed-source, don’t have code
▪ Lost your own source code

▪ Most of the cost of developing a new chip is
developing software for it

So…

If choice of ISA doesn’t have much
impact on system energy/performance,
and it costs a lot to use different ones

Why isn’t there a free, open standard
ISA that everyone can use for
everything?

Universal ISA Requirements

 Works well with existing software stacks, languages
 Is native hardware ISA, not virtual machine/ANDF
 Suits all sizes of processor, from smallest

microcontroller to largest supercomputer
 Suits all implementation technologies, FPGA, ASIC,

full-custom, future device technologies…
 Efficient for all microarchitecture styles: in-order,

decoupled, out-of-order; sequential, superscalar
 Supports extensive specialization to act as base for

customized accelerators
 Stable: not changing, not disappearing

5

RISC-V Origin Story

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP

issues

RISC-V Origin Story

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP

issues

RISC-V Origin Story

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP

issues

RISC-V Origin Story

 So we started “3-month project” in summer 2010 to
develop our own clean-slate ISA

- Andrew Waterman, Yunsup Lee, Dave Patterson, Krste
Asanovic principal designers

 Four years later, we released frozen base user spec
- But also many tapeouts and several research publications

along the way

 In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects
 Obvious choices: x86 and ARM
 x86 impossible – too complex, IP issues
 ARM mostly impossible – no 64-bit, complex, IP issues

Why are outsiders complaining about changes
to RISC-V in Berkeley classes?

What’s Different about RISC-V?

 Simple
- Far smaller than other commercial ISAs

 Clean-slate design
- Clear separation between user and privileged ISA
- Avoids µarchitecture or technology-dependent features

 A modular ISA
- Small standard base ISA
- Multiple standard extensions

 Designed for extensibility/specialization
- Variable-length instruction encoding
- Vast opcode space available for instruction-set extensions

 Stable
- Base and standard extensions are frozen
- Additions via optional extensions, not new versions

10

RISC-V Base Plus Standard Extensions
 Four base integer ISAs

- RV32E, RV32I, RV64I, RV128I
- RV32E is 16-register subset of RV32I
- Only <50 hardware instructions needed for base

 Standard extensions
- M: Integer multiply/divide
- A: Atomic memory operations (AMOs + LR/SC)
- F: Single-precision floating-point
- D: Double-precision floating-point
- G = IMAFD, “General-purpose” ISA
- Q: Quad-precision floating-point

 All the above are a fairly standard RISC encoding in a
fixed 32-bit instruction format
 Above user-level ISA components frozen in 2014

- Supported forever after 11

12

RV32I / RV64I / RV128I + M, A, F, D, Q, C
RISC-V “Green Card”

RISC-V Standard Base ISA Details

▪ 32-bit fixed-width, naturally aligned instructions
▪ 31 integer registers x1-x31, plus x0 zero register
▪ rd/rs1/rs2 in fixed location, no implicit registers
▪ Immediate field (instr[31]) always sign-extended
▪ Floating-point adds f0-f31 registers plus FP CSR, also

fused mul-add four-register format
▪ Designed to support PIC and dynamic linking

13

Variable-Length Encoding

 Extensions can use any multiple of 16 bits as
instruction length
 Branches/Jumps target 16-bit boundaries even in

fixed 32-bit base
- Consumes 1 extra bit of jump/branch address

14

“C”: Compressed Instruction Extension

▪ Compressed code important for:
- low-end embedded to save

static code space
- high-end commercial workloads

to reduce cache footprint
▪ C extension adds 16-bit compressed instructions

- 2-operand instructions only
- Most instructions can only access 8 registers

▪ 1 compressed instruction expands to 1 base instruction
▪ Assembly lang. programmer & compiler oblivious

▪ All original 32-bit instructions retain encoding but now
can be 16-bit aligned
 50%-60% instructions compress ⇒ 25%-30% smaller

15

100%

141%
131% 129%

169%

80%

100%

120%

140%

160%

180%

RV64C RV64 X86-64 ARMv8 MIPS64

64-bit Address

100%

140%
126%

136%

101%

173%

126%

80%

100%

120%

140%

160%

180%
32-bit Address

SPECint2006 compressed code size
with save/restore optimization

(relative to “standard” RVC)

 RISC-V now smallest ISA for 32- and 64-bit addresses

16

RISC-V Privileged Architecture

Modular design supports many classes of system
- Simple embedded systems with no protection
- Embedded systems with protection
- Unix-class systems with page-based virtual memory
- Hypervised Unix systems with two-level paging

17

RISC-V Foundation

 Mission statement
- “to standardize, protect, and promote the free and open

RISC-V instruction set architecture and its hardware and
software ecosystem for use in all computing devices.”

 Established as a 501(c)(6) non-profit corporation on
August 3, 2015
 Now >100 members
 10s of companies participating in standards definition

18

19

Foundation: 100+ Members

RISC-V Foundation

Summary: Why RISC-V?

 Free and open architecture, no proprietary lock-in
 Much simpler ISA than others
 Readily and freely extensible
 Usable as base ISA for every core on SoC

 RISC-V project goal: become the industry-standard ISA
for all computing devices

 Thank you for sponsoring this research!

Questions?
20

	Instruction Sets Want to be Free!
	Instruction Set Architectures don’t matter
	ISAs do matter
	So…
	Universal ISA Requirements
	RISC-V Origin Story
	RISC-V Origin Story
	RISC-V Origin Story
	RISC-V Origin Story
	What’s Different about RISC-V?
	RISC-V Base Plus Standard Extensions
	Slide Number 12
	RISC-V Standard Base ISA Details
	Variable-Length Encoding
	“C”: Compressed Instruction Extension
	SPECint2006 compressed code size�with save/restore optimization�(relative to “standard” RVC)
	RISC-V Privileged Architecture
	RISC-V Foundation
	Foundation: 100+ Members
	Summary: Why RISC-V?

