

<u>Algorithms and Specializers for Provably Optimal</u> <u>Implementations with Resiliency and Efficiency</u>

Krste Asanović, Elad Alon, Jonathan Bachrach, Jim Demmel, Armando Fox, Kurt Keutzer, Borivoje Nikolić, David Patterson, Koushik Sen, Vladimir Stojanović, John Wawrzynek

krste@berkeley.edu

http://aspire.eecs.berkeley.edu

ASPIRE End of Project Party
UC Berkeley
December 5, 2017

It all began back at end of 2011...

 We were searching for what would come after Par Lab (2008-2013)

Today's software paradigm: "Apps"

What's the problem: Functionality Encased in App Silos

Client

Cloud

Data

Each application has a different: user interface, account to register, password, software updates, payment model, different subset of supported devices...

This model cannot scale to hundreds of devices per hundreds of devices per person!

What we want to do in future: Interact with Intelligent Personal Assistant

Like Ms. Potts in *Iron Man*

Or like Jeeves in P.G. Wodehouse's *Aunts Aren't Gentlemen*

Have a dialogue with assistant who you can give high level goals vs. simple steps, who remembers past tasks and can find information for you

Post-ParLab Vision

- Goal: "Computing continuum": users' perception is always connected, always available
- From mobile client -> sensors + mobile client + cloud
- From GUI → Virtual Assistant via Natural User Interfaces
- From a giant menu of applications → set of integrated services
- From local-client scheduling → intelligent Client+Cloud partitioning
- Enable productive development of an integrated set of services that meet end-user requirements of speed, privacy, and reliability through intelligent use of client and cloud computing.

Sponsor's Feedback:

"Work on Energy-Efficient Computing"

Upheaval in Computer Design

- Most of last 50 years, Moore's Law ruled
- Last decade, technology scaling slowed
 - Dennard scaling over (supply voltage ~fixed)
 - Moore's Law (cost/transistor) over?
 - No competitive replacement for CMOS anytime soon
- Users' imagination unlimited, creating new useful applications with endlessly growing compute demands
- Energy efficiency constrains everything
 - Mobile
 - High-performance embedded computing
 - Warehouse-scale computing
- Parallel computing going mainstream, but only one-time improvement in energy efficiency
- What next?

DARPA PERFECT Proposer's Day Feb 9, 2012 UCB HW/SW Specializer Stack Computer Sciences

ASPIRE Goal

Keep computers' performance and energy efficiency improving past end of CMOS transistor scaling until

[Graph from "Advancing Computers without Technology Progress", Hill, Kozyrakis, et al., DARPA ISAT 2012]

ASPIRE Explained

- Algorithms with Provably minimal data movement
- Specialization of software and hardware based on recurring patterns of computation and communication
- Autotuning & design-space exploration of software & hardware Implementations for best Efficiency
- Resiliency from holistic whole-stack design

<u>Algorithms and Specializers for Provably Optimal</u> <u>Implementations with Resiliency and Efficiency</u>

Applications

Algorithms

Software Tools

Architecture

Circuits

ASPIRE System Targets

ASPIRE Lasagna

Driving Applications

Squeezdet exceeded our DARPA Phase-III goals from 2012 proposal: 57 fps at 1.4 J/frame (>2000 improvement in efficiency)

Communication-Avoiding Algorithms

Idea #1: read a piece of a sparse matrix(= graph) into fast memory and take

Idea #2: replicate data (including left-hand side arrays, as in C in C=A*B) and

Seemingly endless "Best Paper" and other awards for this work, due to very real speedups on well-studied kernels

Computing with Specialized Hardware?

Well known, for some applications, custom hardware 100-1000x performance and energy efficiency over general-purpose processors, but how to deploy?

• Custom chip per application (ASIC)?

- NRE costs exploding, ~\$50-100M for cutting-edge ASIC
- Development time too long, months or years, high risk
- Number of ASIC starts dropping over time

Custom "Chiplets"? (aka Lego, Bricks&Mortar, MoChi,...)

- i.e., small custom chips connect to standard parts as System-in-Package
- No industry standards, packaging cost, yield
- Data movement energy/performance costs

Standard programmable logic parts, FPGAs?

- Lower NRE and risk
- Historically, poor energy efficiency and terrible programming productivity

Standard programmable Systems-on-Chip (SoC)?

- Common for both server and mobile platforms today
- Specialized hardware as heterogeneous accelerators

Evaluating Hardware Choices

Applications Interactive Cloud Genomics Learning Processing Analysis Vision Radio

What to target?

What are productivity/cost/performance tradeoffs?

Chisel: Constructing Hardware In a Scala Embedded Language

- Embed hardware-description language in Scala, using Scala's extension facilities:
 Hardware module is just data structure in Scala
- Different output routines generate different types of output (C, FPGA-Verilog, ASIC-Verilog) from same hardware representation
- Full power of Scala for writing hardward
 Chisel 3.0/ FIRRTL 1.0 released. External industry + academia uptake accelerating.

RISC-V ISA

www.riscv.org

- A new completely free and open ISA
 - Already GCC, Linux, glibc, LLVM, upstreamed!
 - RV32, RV64, and RV128 variants for 32b, 64b, and 128b address spaces defined
- Base ISA only <50 integer inct RISC-V experiencing strong momentum as legitimate

alternative to other proprietary ISAs. 70+ companies are members of RISC-V Foundation

Nvidia & Western Digital committed to using RISC-V.

Linley group "Best Technology in 2016".

Becoming the standard ISA for education.

...preteu at Berkeley so far (45nm, 28nm, 16nm)

Rocket Chip Generator

Agile Hardware Development

Always have a fabricatable working prototype, incrementally add features and push to "tapein" often

C. Validation Through Agile Iteration

RISC-V Chips Designed at Berkeley

FireBox Overview

ASPIRE Summary

- Architect and program whole applications using computational and structural patterns
- Develop algorithms that minimize data movement
- Pattern-specific compilers to specialize and autotune software for best hardware performance
- New "general-purpose specialized" architectures employing pattern-specific acceleration
- Parameterized *generators* and design-space exploration to optimize hardware µarchitecture
- Resilient circuit design, new tech. (photonics, NVM)
- Fast flexible accurate whole-system FPGA simulation
- Real silicon prototypes to validate ideas

ASPIRE Timeline

ASPIRE Sponsors

- DARPA PERFECT program
- DARPA POEM program (Si photonics)
- DARPA CRAFT program (new)
- STARnet Center for Future Architectures (C-FAR)
- Lawrence Berkeley National Laboratory
- Industrial sponsors
 - Intel
- Industrial affiliates
 - Google
 - HPE
 - Huawei
 - LGE
 - NVIDIA
 - Oracle
 - Samsung

PEOPLE

PROJECTS

PUBLICATIONS

0

Making Intelligent Decisions on Big Data

In the RISELab, we are working on developing Secure Real-time Decision Stack, an open source platform, tools and algorithms for low-latency decisions on live data with strong security.

Agile Design of Efficient Processing Technologies

Krste Asanovic, Bora Nikolic, Elad Alon, Jonathan Bachrach, Jonathan Ragan-Kelley, Koushik Sen, Sanjit Seshia

ADEPT: New 5-Year Project

adept.eecs.berkeley.edu

- Moore's Law has effectively ended
 - But silicon manufacturing is already wonderful technology
- General-purpose computing stuck in plateau
 - Software's free ride is over
- Specialized silicon needed for new applications
 - Machine learning/inference, IoT sensing/processing, automotive,...
- But too expensive to design custom chips today!
 - semiconductor industry model broken for lots of specialized chips.
- Solutions: Reduce NRE!
 - Develop next-generation of chip-design automation
 - Back to the future: use *right* node instead of *next* node
 - New industry business models: share risks, increase rewards
 - Open-source hardware: RISC-V ISA is one element

CMOS at End of Moore's Law

- Wonderful, almost magical, technology
- Fabricate billions of transistors
- Connect them with billions of wires
- Clock at a few GHz
- Dissipate <100W
- Near 100% yield, cost a few \$/die
- Manufacturing is least of our problems
- Good, because nothing waiting in wings to replace anytime soon (20+ years to competitor?)

Custom Chip Costs

- NRE: Non-Recurring Engineering costs
 - Design + tooling for production
- Manufacturing cost
 - Cost of each chip made once in production
 - Silicon manufacture plus other costs including package & test, which get worse relatively with smaller nodes

Overall Cost/Project

Total #transistors

Old Semiconductor Business Model

- Design standard part for the "killer socket"
 - Was PC, now smartphone
- Sell 100s millions parts
- Ideally, ~0 customers, ~infinite volume

 Not working so well now with high NREs, end of Moore's Law, and fragmenting markets

No good ideas, so merge to cut costs

ADE Biggest Semiconductor Acquisition Agreements

Ranking	Acquisition-Buyer (Year Announced)	Price Tag (\$B)
1	NXP by Qualcomm (2016)	\$39.0
2	Broadcom by Avago (2015)	\$37.0
3	ARM by SoftBank (2016)	532.0
4	SanDisk by Western Digital (2015)	\$19.0
5	Freescale by U.S Investment Companies (2006)	\$17.6
6	Altera by Intel (2015)	\$16.7
7	Linear Technology by Analog Devices (2016)	\$14.8
8	Freescale by NXP (2015)	\$11.8
9	Burr Brown by TI (2000)	\$7.6
10	LSI by Avago (2013)	\$6.6
11	National Semiconductor by TI (2011)	\$6.5
12	ATI by AMD (2006)	\$5.4
13	Spansion by Cypress (2014)	\$5.0
14	Agere by LSI (2006)	\$4.0
15	Chartered by GlobalFoundries (2009)	53.9

7 of top 8 in last 2 years

New Silicon Model emerging

Instead of chip company's standard product, chip customers want own differentiated designs:

- Apple, Samsung for phones
- Google, Amazon, Microsoft, for client/cloud
- Tesla?, Uber? for cars?
- IoT products, FitBit? maybe?
- End-system value/profit justifies chip NRE

But what about the non-huge firms that can't risk NRE, or don't have chip experience?

- Can we cut NRE to <<\$100M, or <<\$10M or <<\$1M?</p>

Attacking all the NRE components

Using data center (FireBox) and embedded vision chips (Raven/Hurricane/Eagle) as driving applications:

- Reduce software cost with high-level programming tools (Halide, serverless) and standard ISA (RISC-V)
- Reduce architecture design and verification with reusable open-source chip generators (Chisel/FIRRTL)
- Share costs of analog/mixed-signal IP development by sticking to a few nodes, analog generators (BAG), maybe open-source analog!
- Automate backend physical design, save on tool costs (HAMMER/FICL)
- Improve verification and validation, accelerate with cloud-hosted FPGAs

ADEPT Sponsors

- Cornerstone funding: Intel Science and Technology
 Center on Agile Design (ADEPT: Agile Development of Efficient Processing Technologies)
 - PIs: Asanovic, Nikolic, Bachrach, Ragan-Kelley, Seshia
 - Funding for 3 years initially, started in December 2016
- Also AHDEPT: Agile Hardware Design in Extreme Process Technologies
 - Part of **DARPA CRAFT** program, started in May 2016
 - Pis: Alon, Nikolic, Bachrach, Sen
 - Partners: Northrop-Grumman, Cadence
- Industrial sponsors: Siemens and SK Hynix
- Looking for more!
- First retreat: Monterey, January 8-10, 2018

ASPIRE End of Project

- It's been a great adventure
- Thank you all for feedback over the years!
- Many impactful results
 - SqueezeDet -> DeepScale startup
 - CA Algorithms -> Many awards
 - FireBox photonics -> Nature article on first photonic micro,
 Ayar Labs startup
 - RISC-V ISA -> widespread industry and academia adoption
 - Chisel + Agile Hardware Design -> SiFive, JITx startups
 - https://aspire.eecs.berkeley.edu/aspire-best-of-papers/
- Many amazing graduated/graduating students
- Strong foundation for the next 5-year ADEPT project