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Evolution	of	CNNs:
LeNet vs AlexNet (140x)
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AlexNet	

LeNet 5

8 layers	
61M parameters
1.5	GFLOPs/Inference
5.4	PFLOPs/Epoch

7 layers	
431K parameters
4.6	MFLOPs/Inference
0.8	TFLOPs/Epoch

LeCun,	Y.,	Bottou,	L.,	Bengio,	Y.	and	Haffner,	P.,	1998.	Gradient-based	learning	applied	to	
document	recognition. Proceedings	of	the	IEEE, 86(11),	pp.2278-2324.

Krizhevsky,	A.,	Sutskever,	I.	and	Hinton,	G.	E., ImageNet	Classification	with	Deep	Convolutional	
Neural	Networks, NIPS	2012:	Neural	Information	Processing	Systems,	Lake	Tahoe,	Nevada



Accuracy	Improvement	after	AlexNet
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ImageNet	top-5	error	rate

Source:	http://paddlepaddle.org/docs/develop/book/03.image_classification/index.html



Mainstream	Computer	Vision	Research

• Focused on fundamental issues such as how to create vision systems 
that equal or surpass humans in their ability to comprehend their 
environment

• Leads to a preeminent concern on accuracy on whatever is the latest 
thing – e. g. image captioning

• “only a small subset of papers discuss running time in any detail”
– J. Huang, Speed/Accuracy Trade-offs for Modern Convolutional 

Object Detectors, 2016. 
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PC	for	Computer	
Vision	Researchers
~	80	TeraFlops DGX-1

8	x	P100

Google	Data
Center



2015:	Most	Apps	Using	DNNs
Run	on	Clusters	or	the	Cloud

• Economics and technology of client-cloud interactions is complicated –
another problem we have been working on for a decade 

• We want client-centric apps because:
– Privacy
– Low latency – as a requirement or better user experience
– “Always on” reliability – even there’s no network connection available
– Transmission cost for Internet-of-things (IOT) applications
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We	want	the	accuracy	of	CNNs/DNNs
but	within	embedded	constraints

• What can we do with 1000x less speed and 100x less power?
– 11 TFLOPS à 800 MFLOPS – 223 Watts to 3 Watts 6

DGX-1
130-170	TFLOPS
3200	Watts
128	GB

TitanX
11	TFLOPS
223	Watts
12GB

Smartphones
800	MFLOPs
3	Watts
2-4GB

IOT	Devices
100’s	MHz
<1Watt
<1GB

Experimental	
Level	5	
Urban	Taxi
KiloWatts

Level	4-5	
Urban	Taxi
100’s	Watts

Individual	Sensors	
500mW	– 5W

Level	1-3	
Passenger
10’s	of	watts



Maybe	It’s	Time	to	Re-evaluate
More	Complex	Nets

Faster
Computation

More	
Complex	
Nets

More
Data
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Equivalent	Accuracy	50x	Smaller
SqueezeNet

[1]		Krizhevsky,	Alex,	Ilya	Sutskever,	and	Geoffrey	E.	Hinton.	"Imagenet classification	with	deep	convolutional	neural	
networks."	Advances	in	neural	information	processing	systems.	2012.	APA
[2]	Iandola,	Forrest	N.,	et	al.	"SqueezeNet:	AlexNet-level	accuracy	with	50x	fewer	parameters	and<	1MB	model	size."		arXiv
preprint	arXiv:	1602.07360	(2016).	(February	2016) 8

CNN	 Top-5	Accuracy
ImageNet

Model	
Parameters

Model	
Size

After	Deep
Compression

AlexNet[1] 80.3% 60M 243MB 6.9MB

SqueezeNet[2] 80.3% 1.2M 4.8MB 0.47MB

AlexNet [1]

SqueezeNet [2]

Conv 1x1,	C/4

Conv 3x3,	C/2 Conv 1x1,	C/2

Concatenate

Input	tensor:	H	x	W	x	C

Output	tensor:	H	x	W	x	C

Conv 1x1,	C/4

Conv 3x3,	C/2 Conv 1x1,	C/2

Concatenate

Input	tensor:	H	x	W	x	C

Output	tensor:	H	x	2W	x	C

Deconv
upsample X2

FireModule FireDeconv



Impact of	SqueezeNet
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Github stars:

Paper	citations:



Impact	of	SqueezeNet

• SqueezeNet in deep learning frameworks

• SqueezeNet showcased on embedded processors

• SqueezeNet in mobile software development kits

• SqueezeNet-based mobile applications

• Squeezing becomes a meme for mobile applications

• SqueezeNet in education

• Life after SqueezeNet: SqueezeNext, ShiftNet
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SqueezeNet ported	to	DL	frameworks
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SqueezeNet 100fps	on	ExynoTera
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SqueezeNet is	50x	smaller	than	AlexNet
SqueezeNet is	12x	Faster	than	ResNet 152



Normalized Energy Consumption
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• 16x16	PE	array
(PE	performs	1D	conv.)

• 256KB	Global	buffer
(w/	double	buffering)

• 128B	RF	per	PE

Buffer

Accumulator

Buffer
PE PE PE

PE PE PE

PE PE PE

DMAC

SqueezeNet 2	– 10X	more	energy	efficient	than	other	popular	nets
Kiseok Kwon:	Samsung	Digital	Media	City



NXP	Demos	at	
Embedded	Vision	Summit

12/12/17 15

Introduced	SqueezeNet
for	object	classifcation
to	sponsors	at	BDD	

opening	
3/20/2016



NXP	at	Embedded	Vision	Summit

12/12/17 16

Speed:	20	FPS
Power:	500	mW
For	more	NXP	demo:	https://www.nxp.com



NXP	demo
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Qualcomm	demo	at	F8

• QualComm and FB collaborate to show speedups on SqueezeNet at F8
18



ARM
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Paper:	Sun,	Dawei,	Shaoshan Liu,	and	Jean-Luc	Gaudiot.	"Enabling	Embedded	
Inference	Engine	with	ARM	Compute	Library:	A	Case	Study." arXiv preprint	
arXiv:1704.03751 (2017).
Code:	https://github.com/ARM-software/ComputeLibrary



FPGA
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Link:	https://lankas.github.io/15-618Project/
Code:	https://github.com/lankas/SqueezeNet
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Espresso:	a	mobile	SDK	for	iPhone6

iPhone 6: CMU 5/2016: http://codinfox.github.io/espresso/
• Zhihao Li and Zhenrui Zhang 
• 1st prize in 2016 CMU Annual Parallel Competition



SqueezeNet in	
Apple’s	CoreML
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SqueezeNet in	Baidu’s	MDL	
(mobile	deep	learning)
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Style	Transfer	using	SqueezeNet
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[1]	Gatys,	Leon	A.,	Alexander	S.	Ecker,	and	Matthias	Bethge.	"A	neural	algorithm	of	artistic	style." arXiv preprint	
arXiv:1508.06576(2015).
[2]	https://github.com/lizeng614/SqueezeNet-Neural-Style-Pytorch	

+ =

Original	model[1] based	on	VGG	19:	575MB

Efficient	model[2]	based	on	SqueezeNet:	4.8MB

Now	you	can	run	it	
locally:
• Interactively
• Without	cloud	

access
(if	you’re	a	teenager)

>100X	reduction



America’s	Favorite	Mobile	App:
Not	Hotdog
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• SqueezeNet	powers	Version	2	of	the	Not	
Hotdog	app	from	the	Silicon	Valley	TV	
show.

• A	variant	of	MobileNets	powers	Version	3.



SqueezeDet for
Object	Detection

Bounding	
boxes

Final	
detectionsInput	

image
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Best	Paper	Award:	Bichen Wu,	Forrest	Iandola,	Peter	H.	Jin,	and	Kurt	
Keutzer.	2017.	SqueezeDet:	Unified,	small,	low	power	fully	
convolutional	neural	networks	for	real-time	object	detection	for	
autonomous	driving.	In	Proceedings,	
CVPR	Embedded	Computer	Vision	Workshop,	July	2017.

Filter
Conv
Det

feature	
map

Speed:	60	FPS
Model	size:	7.8	MB
Energy:	1.4	J	/	frame



SqueezeDet demo
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• Created by Youtuber TK Woo
– Link: https://youtu.be/O5RcHs9uqVA
– Search on Youtube: SqueezeDet Demo



SqueezeDet deployment	on	mobile	
devices

• We used Tensorflow Mobile to deploy SqueezeDet on an iPhone 6
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SqueezeSeg for	LiDAR	Point	
Cloud	Segmentation
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Conv1b

• Designed	for	LiDAR	point	cloud	segmentation	for	autonomous	driving
• Extremely	high	efficiency	(on	Titan	X	maxwell GPU):

• 114	Frames	per	second
• 3.46	MB	of	parameters
• 0.7	J	per	frame	

Wu,	Bichen,	et	al.	"SqueezeSeg:	Convolutional	Neural	Nets	with	Recurrent	CRF	for	Real-Time	Road-
Object	Segmentation	from	3D	LiDAR	Point	Cloud." arXiv preprint	arXiv:1710.07368(2017).

Conv 1x1,	C/4

Conv 3x3,	C/2 Conv 1x1,	C/2

Concatenate

Input	tensor:	H	x	W	x	C

Output	tensor:	H	x	W	x	C

Conv 1x1,	C/4

Conv 3x3,	C/2 Conv 1x1,	C/2

Concatenate

Input	tensor:	H	x	W	x	C

Output	tensor:	H	x	2W	x	C

Deconv
upsample X2

FireModule FireDeconv



SqueezeSeg demo
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Ground	truth	label	map Predicted	label	map

Video	reference
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Squeezing	AI	into	Mobile
Becomes	a	Meme

“We’re	squeezing	AI	into	smartphones.”	
- Mark	Zuckerberg,	Keynote,	F8
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Google	Brain’s	deeplearnjs.org		folks	use
SqueezeNet interactively	in	a	web	browser

• Folks from Google Brain have created an interactive tool and code for 
learning deep learning

• Check out: https://deeplearnjs.org/
• Run SqueezeNet in a web browser and see visualizations of the layers:

– https://deeplearnjs.org/demos/imagenet/ 36

98ms	in	Javscript in	a	web	browser!		



Convolutional	Layers
in	SqueezeNet

• https://deeplearnjs.org/demos/imagenet/ 37

3	channels	(RGB)

96	channels 256	channels 1000	channels



SqueezeNet in	CS231	
at	Stanford

• SqueezeNet used in assignment and course projects:

38

Item	removal	detection:
http://cs231n.stanford.edu/reports/2017/pdfs/213.pdf

Mice	behavior	analysis:
http://cs231n.stanford.edu/reports/2017/pdfs/500.pdf

3D	SqueezeNet for	medical	images
http://cs231n.stanford.edu/reports/2017/pdfs/23.pdf
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SqueezeNext

40

.

.

.

.

.

.

.

.

.

.

.

• Matches AlexNet with 120x smaller parameters 
• Deeper version achieves VGG accuracy with 36x smaller model



ShiftNet

• A lesson from SqueezeNet: spatial convolution (3x3, 5x5, etc.) is expensive ... 
– Replace spatial convolutions with the “Shift” operation[1] that requires zero-

parameter, zero-FLOPs
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Top-1	Acc. Parameter size Reduction

AlexNet 57.2 60	million 1X

SqueezeNet 57.5 1.2	million 50X

ShiftNet-C 58.8 0.78	million 77X

[1]	Wu	B,	Wan	A,	Yue	X,	Jin P,	Zhao	S,	Golmant N,	Gholaminejad A,	Gonzalez	J,	Keutzer K.	Shift:	A	Zero	FLOP,	Zero	Parameter	
Alternative	to	Spatial	Convolutions.	arXiv preprint	arXiv:1711.08141.	2017	Nov	22.

• Other tasks:
– Face verification: 37X parameter reduction 
– Style transfer: 6X parameter reduction

• Classification:



Concolusion

• The increasing demand for deploying CNNs/DNNs on embedded 
devices requires “Squeezing” parameter size, computation and 
energy consumption of neural networks

• SqueezeNet very well addressed the above problem, and has been 
widely adopted:
– It’s ported to other deep learning frameworks
– It’s demonstrated in embedded processors
– It’s included in many mobile SDKs
– It powered many mobile applications
– It’s used for education

• Beyond SqueezeNet:
– We build SqueezeNext, ShiftNet to achieve better accuracy with 

smaller model size
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Thank	you!
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