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Type-Safety

Generators: Type-Safe Meta-Programming for RTL

Design Reuse Powerful Language Features
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Hired Jonathan Bachrach
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At the end of ParLab, we solved hardware design
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ParLab Chip Highlight Reel

7



8



9



And so, the problem of hardware design was 
forever solved.
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Just kidding.
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Solving Hardware Design ≠ Solving The Hardware Design Loop

Verification Physical Design

Production Validation Packaging Tapeout

* from “How to Draw Chip and Dale booklet”. (Walt Disney, 1955)

Specification
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RTL Design



What had to change?

Hardware Design Ecosystem External CollaborationsStable and User-Friendly API
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Platform-Specific or Application-Specific RTL Changes

IBM 45nm 
SOI

ST 28nm 
FDSOI

Zynq FPGA

Chip RTL
+ scan interface
+ snapshotting
+ interactive debug + clock-generators

+ SRAMs with init
+ specialized layout

+ SRAM macros
+ modified module hierarchy
+ specialized layout
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What were we doing?

Manually change RTL?

Use CAD tool scripts?

Python script to edit RTL

Not reusable/robust/composable

Many unsupported use cases

Obfuscates/specializes RTL

* from http://www.zoom-comics.com/wp-content/uploads/sites/36/2011/01/calvin-and-hobbes-faces.jpg, accessed 10/23/17
* from https://useravatar.services.amuniversal.com/user_avatars/avatars_gocomicsver3/3001000/3001618/IMG_7625.GIF, accessed 10/23/17 15



Realization: We need a software stack, but for hardware

libraries

language

compiler

platforms

projects

x86 ARM RISC-V
transforms

clang

HwachaRocketBOOM

rocketchip chisel-utils
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FIRRTL
Chisel Frontend



Second-System-Syndrome: But... do we really need all that?

Chisel: 19248 loc
RocketChip: 9578 loc

BOOM: 8298 loc
Hwacha: 6953 loc
Sodor: 6451 loc ?
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Specification RTL Design Verification Physical Design

TapeoutPackagingValidationProduction
18



For impact, we need an ecosystem

FPGA Snapshotting

FPGA Assertions

FPGA FAME-1

ChiselVerilog PyChisel

FIRRTL
ASIC SRAMS

Floorplanning Hints

Retiming
C++Verilog Scala
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BIST/JTAG Stitching Early Area Estimation



Developing, Porting, Code Reviews, Testing, and so forth
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Spring 2015

Summer 2015

Fall 2015

Winter 2015

Spring 2016

Summer 2016

Fall 2016

Winter 2016

Spring 2017

Summer 2017

Fall 2017

Designed FIRRTL Compiler

Designed Chisel 3 Frontend

Ported RocketChip

Ported Chisel Testers

Added Fixed-Point Type

Added Analog Type

Added withClock

Released Chisel 3.0.0

Released FIRRTL 1.0.0



Chisel 3.0.0 and FIRRTL 1.0.0 have been released!
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● Projects
○ FireSim - Datacenter Emulation on FPGAs
○ Strober - Fast+Accurate Power Sims. for Long Programs
○ Hurricane 2 - Multi-Core DVFS (Sub-Core)

● Transformations
○ Quick (and Semi-Accurate) Timing and Area Estimation
○ Automatic Combinational Cycle Removal
○ Snapshotting and Hardware Assertions for FPGAs

● New Features
○ Hardware Types vs Hardware Components
○ New types (e.g. Complex, DspReal, Fixed-Point, Analog)
○ Chisel Library support (annotations)
○ Invalidate API for safer connections

Chisel 3
https://github.com/freechipsproject/chisel3/releases/tag/v3.0.

0

FIRRTL
https://github.com/freechipsproject/firrtl/releases/tag/v1.0.0



Intel: Fast and Semi-Accurate FIRRTL Timer
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What had to change?

A Chisel Compiler External CollaborationsStable and User-Friendly API
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Chisel 3.0.0
Reg(UInt(3.W))
RegNext(3.U)
RegInit(3.U)
Reg(chiselTypeOf(3.U))

Emphasis on Clarity

1. Register of type UInt, width of 3
2. Register whose next cycle’s value is 3
3. Register whose initial value is 3
4. Register no initial value and width of 2
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Reg(UInt(3))

Chisel 2.0.0
1. Register of type UInt, width of 3
2. Register whose next cycle’s value is 3
3. Register whose initial value is 3
4. Register no initial value and width of 2



Chisel 
2.0.0

inferred type arguments [Object] do not conform to method apply's 
type parameter bounds [T <: Chisel.Data]

Less Error-Prone API’s
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[info] [0.000] Elaborating design...
[info] [0.022] Done elaborating.

[info] [0.000] Elaborating design...
[info] [0.022] Done elaborating.

def func[T<:Chisel.Data](other: T) = {
    io.out := Reg(next = other)
}

def func[T<:Chisel.Data](other: T) = {
    io.out := Reg(null.asInstanceOf[T], next = other, null.asInstanceOf[T])
}

def func[T<:Chisel.Data](other: T) = {
    io.out := RegNext(other)
}

Chisel 
3.0.0



Everything in this scope with have 
io.alternateReset as the reset

Lightweight Support for Multi-Clock/Reset

withReset(io.alternateReset) {
        val altRst = RegInit(0.U(10.W))
        ...
}
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withClock(io.alternateClock) {
        val altClk = RegInit(0.U(10.W))
        ...
}

Everything in this scope with have 
io.alternateClock as the clock



Exciting Future Work: The Unified Chisel Tester

● Fragmented Landscape
○ BasicTester (Hardware Testing Hardware)
○ PeekPokeTester (Interactive and Slow)
○ AdvancedTester (Limited Concurrency)

● Unified Chisel Tester
○ Lightweight, powerful, fast
○ Multiple circuit drivers, multithreaded
○ Integration with Verilator, VCS, Interpreter

● If you have thoughts - send them our way!

(Current Chisel Testing Environment)

The following image is a 
DRAMATIZATION of real experiences
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Device Under TestTester



What had to change?

A Chisel Compiler External CollaborationsStable and User-Friendly API
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Documentation, Documentation, Documentation
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Open-Development via Github Issues/Pull Requests
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Stack Overflow!
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Academic Impact: 188 citations (in 5 years)
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Active Users (That We Know Of)
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Ideas for Governance? Maintenance? Workshops?
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Thanks to all Chiselers out there! (And many more!!)
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So long (ASPIRE), and thanks for all the fish chips!
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