
Chisel 2.0.0 to Chisel 3.0.0

Type-Safety

Generators: Type-Safe Meta-Programming for RTL

Design Reuse Powerful Language Features

4

Hired Jonathan Bachrach

5

At the end of ParLab, we solved hardware design

6

ParLab Chip Highlight Reel

7

8

9

And so, the problem of hardware design was
forever solved.

10

Just kidding.

11

Solving Hardware Design ≠ Solving The Hardware Design Loop

Verification Physical Design

Production Validation Packaging Tapeout

* from “How to Draw Chip and Dale booklet”. (Walt Disney, 1955)

Specification

12

RTL Design

What had to change?

Hardware Design Ecosystem External CollaborationsStable and User-Friendly API

13

Platform-Specific or Application-Specific RTL Changes

IBM 45nm
SOI

ST 28nm
FDSOI

Zynq FPGA

Chip RTL
+ scan interface
+ snapshotting
+ interactive debug + clock-generators

+ SRAMs with init
+ specialized layout

+ SRAM macros
+ modified module hierarchy
+ specialized layout

14

What were we doing?

Manually change RTL?

Use CAD tool scripts?

Python script to edit RTL

Not reusable/robust/composable

Many unsupported use cases

Obfuscates/specializes RTL

* from http://www.zoom-comics.com/wp-content/uploads/sites/36/2011/01/calvin-and-hobbes-faces.jpg, accessed 10/23/17
* from https://useravatar.services.amuniversal.com/user_avatars/avatars_gocomicsver3/3001000/3001618/IMG_7625.GIF, accessed 10/23/17 15

Realization: We need a software stack, but for hardware

libraries

language

compiler

platforms

projects

x86 ARM RISC-V
transforms

clang

HwachaRocketBOOM

rocketchip chisel-utils

16

FIRRTL
Chisel Frontend

Second-System-Syndrome: But... do we really need all that?

Chisel: 19248 loc
RocketChip: 9578 loc

BOOM: 8298 loc
Hwacha: 6953 loc
Sodor: 6451 loc ?

17

Specification RTL Design Verification Physical Design

TapeoutPackagingValidationProduction
18

For impact, we need an ecosystem

FPGA Snapshotting

FPGA Assertions

FPGA FAME-1

ChiselVerilog PyChisel

FIRRTL
ASIC SRAMS

Floorplanning Hints

Retiming
C++Verilog Scala

19

BIST/JTAG Stitching Early Area Estimation

Developing, Porting, Code Reviews, Testing, and so forth

20

Spring 2015

Summer 2015

Fall 2015

Winter 2015

Spring 2016

Summer 2016

Fall 2016

Winter 2016

Spring 2017

Summer 2017

Fall 2017

Designed FIRRTL Compiler

Designed Chisel 3 Frontend

Ported RocketChip

Ported Chisel Testers

Added Fixed-Point Type

Added Analog Type

Added withClock

Released Chisel 3.0.0

Released FIRRTL 1.0.0

Chisel 3.0.0 and FIRRTL 1.0.0 have been released!

21

● Projects
○ FireSim - Datacenter Emulation on FPGAs
○ Strober - Fast+Accurate Power Sims. for Long Programs
○ Hurricane 2 - Multi-Core DVFS (Sub-Core)

● Transformations
○ Quick (and Semi-Accurate) Timing and Area Estimation
○ Automatic Combinational Cycle Removal
○ Snapshotting and Hardware Assertions for FPGAs

● New Features
○ Hardware Types vs Hardware Components
○ New types (e.g. Complex, DspReal, Fixed-Point, Analog)
○ Chisel Library support (annotations)
○ Invalidate API for safer connections

Chisel 3
https://github.com/freechipsproject/chisel3/releases/tag/v3.0.

0

FIRRTL
https://github.com/freechipsproject/firrtl/releases/tag/v1.0.0

Intel: Fast and Semi-Accurate FIRRTL Timer

22

What had to change?

A Chisel Compiler External CollaborationsStable and User-Friendly API

23

Chisel 3.0.0
Reg(UInt(3.W))
RegNext(3.U)
RegInit(3.U)
Reg(chiselTypeOf(3.U))

Emphasis on Clarity

1. Register of type UInt, width of 3
2. Register whose next cycle’s value is 3
3. Register whose initial value is 3
4. Register no initial value and width of 2

24

Reg(UInt(3))

Chisel 2.0.0
1. Register of type UInt, width of 3
2. Register whose next cycle’s value is 3
3. Register whose initial value is 3
4. Register no initial value and width of 2

Chisel
2.0.0

inferred type arguments [Object] do not conform to method apply's
type parameter bounds [T <: Chisel.Data]

Less Error-Prone API’s

25

[info] [0.000] Elaborating design...
[info] [0.022] Done elaborating.

[info] [0.000] Elaborating design...
[info] [0.022] Done elaborating.

def func[T<:Chisel.Data](other: T) = {
 io.out := Reg(next = other)
}

def func[T<:Chisel.Data](other: T) = {
 io.out := Reg(null.asInstanceOf[T], next = other, null.asInstanceOf[T])
}

def func[T<:Chisel.Data](other: T) = {
 io.out := RegNext(other)
}

Chisel
3.0.0

Everything in this scope with have
io.alternateReset as the reset

Lightweight Support for Multi-Clock/Reset

withReset(io.alternateReset) {
 val altRst = RegInit(0.U(10.W))
 ...
}

26

withClock(io.alternateClock) {
 val altClk = RegInit(0.U(10.W))
 ...
}

Everything in this scope with have
io.alternateClock as the clock

Exciting Future Work: The Unified Chisel Tester

● Fragmented Landscape
○ BasicTester (Hardware Testing Hardware)
○ PeekPokeTester (Interactive and Slow)
○ AdvancedTester (Limited Concurrency)

● Unified Chisel Tester
○ Lightweight, powerful, fast
○ Multiple circuit drivers, multithreaded
○ Integration with Verilator, VCS, Interpreter

● If you have thoughts - send them our way!

(Current Chisel Testing Environment)

The following image is a
DRAMATIZATION of real experiences

27

Device Under TestTester

What had to change?

A Chisel Compiler External CollaborationsStable and User-Friendly API

28

Documentation, Documentation, Documentation

29

Bo
otc

am
ps

 an
d T

uto
ria

ls

30

Open-Development via Github Issues/Pull Requests

31

Stack Overflow!

32

Academic Impact: 188 citations (in 5 years)

33

Active Users (That We Know Of)

34

35

Ideas for Governance? Maintenance? Workshops?

36

Thanks to all Chiselers out there! (And many more!!)

37

So long (ASPIRE), and thanks for all the fish chips!

38

