_/A\SPIRE

UC BERKELEY

Chisel 2.0.0 to Chisel 3.0.0

Because everybody loves a trilogy

Presentation by Adam lzraelevitz

A long time ago, in a laboratory (not) far,

far away....

Generators: Type-Safe Meta-Programming for RTL

WHY DO YOU LIKE. FUNCTIONAL
PROGRAMMING 50 MUCH? WHAT
) s DOES IT ACTUALLY GET YOU?

TAIL RECURSION 15
IS OWN REWARD.
Re §=-DUCE

b g B 3
LAY BT D E ‘ %%

Design Reuse Type-Safety Powerful Language Features

By #=USE

Hired Jonathan Bachrach

Chisel: Constructing Hardware in a
Scala Embedded Language

Jonathan Bachrach, Hu; Vo, B
Andrew Waterman, Rimas AviZi

{jzbl

n Richards, Yunsup Lee,

ienis, John Wawrzynek, Krste Asanovié¢
ECS Department, UC Berkeley *
Jobny

ABSTRACT

In this paper we introduce Chisel, a new hardware constric-
tion language that supports advanced hardware design using
highly parameterized genceators and layered domain-specific
hardware languages. By embedding Chisel in the Seala pro-
sramming language, we raise the level of hardware design ab-
straction by providing concepts including object orientation,
functional programming, parameterized types, and type in-
ference, Chisel can gencrate a ligh-speed C-+ +-based eyele-
accurate sofuware simiator, or low-level Verilog designed to
map o either FPGAs or to a standard ASIC flow for syn-
thesis, This paper presents Chiscl, its embedding in Scala,
hardware examples, and results for C-++ simulation, Verilog
cmulation and ASIC synthesis.

Categories and Subject Descriptors
B.6.4 [Logic Design]: [Design Aids — automatic synthesis,
hardware description languages|

General Terms
Design, Languages, Performance

Keywords
CAD

INTRODUCTION
The dominant traditional hardware- description languages
(HDLs), Verilog and VHDL, were originally developed as
hardware simulation languages, and were only later adopted
as a basis for hardware synthesis. Beeause the semanties of
these languages are based around simulation, synthesizable

1

“Research supported by DoE Award DE-SC0003624, and
by Microsoft (Award #024263) and Intel (Award #mm:&
fundi ‘matching funding by U.C. Discovery (Avwa:
#DIGOT-10227).

Permission to make digital or hard copies of all or part of this work for
personal ar classroom use is granted without fee provided that copies are
ot made or distributed for profit or commercial advaiage and that sopies
ear this notice and the full citation on the first page. To copy otherwise, to
republish, o redistribute to lists, requires prior specific
permission and/or a fec.

DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 975-1-4503-1199-1/12/06 . 310,00

Ledu

designs must be inferred from a subset of the language, com-
plicating tool development and designer cducation. These
languages also lack the powerful abstraction facilities that
are common in modern software languages, which leads to
low designer productivity by making it difficult to reuse com-
ponents. Constructing efficien hardware designs requires
extensive design-space exploration of alternative system. mi-
croarchitectures (8] but these traditional HDLs have limited
module generation facilities and are ill-suited to producing
and composing the highly parameterized module generators
required to support thorough design-space cxploration. Re-
cont extensions such as System Verilog improve the type sys-
tem and parameterized generate facilities but still lack many
powerful programming language features.

To work around these lmitations, one common approach
is to use another language as a macro processing language
for an underlying HDL. For example, Genesis? uses Per] to
provide more flexible parameterization and elaboration of
hardware blocks written in SystemVerilog [3]. The language
called Verischemelog (6] provides a Scheme syntax for spec-
ifying modules in a similar format to Verilog. JHDL (1]
equates Java classes with modules. HML [7] uses standard
ML funetions to wire together a cireuit. These apptoaches
allow familiar and powerful languages to be macro languages
for hardware netlists, but effeetively require leaf components
of the design to be described in the underlying HDL. This
combined approach i cumbersome, combining the poor ab-
straction facilities of the underlying HDL with a completely
different high-level programming model that does not un-
derstand hardware types and semantics.

Analt i is to begin from a d i
application programeming language from which a hardware
block is gencrated. Esterel (2] uses event-based statements
10 program hardware for reactive systems, DIL [4] is an in-
termediate language targeted ai stream processing and hard-
ware virtualization. Bluespee (3] supports a general concur-
rent computation model, based on guarded atomic actions.
While these can provide great designer productivity whes
the task in hand matches the patiern cncoded in the appli-
cation programming model, they are a poor match for tasks
outside their domain, For example, the design of a pro-

able microprocessor is not well deseribed in a stream
‘programming model, and guarded atomic actions are not a
natural way to express a high-level DSP algorithm. Further-
more, In general it is difficult to derive an cfficient microar-
chiteeture from a higher-lovel computation model, cspecially
if the goal is a programmable engine 10 run many applica-
tions, where the human designer would prefer 10 write a

At the end of ParLab, we solved hardware design

4
» " - i

ParLab Chip Highlight Reel

And so, the problem of hardware design was
forever solved.

Just kidding.

Solving Hardware Design # Solving The Hardware Design Loop

\RITL Design/

* from “How to Draw Chip and Dale booklet”. (Walt Disney, 1955)

Hardware Design Ecosystem

What had to change?

13

Platform-Specific or Application-Specific RTL Changes

[Chip RTL J

+ scan interface . - . + SRAM macros

+ snapshotting . N ., + modified module hierarchy
+ interactive debug B ’ + clock-generators C., + specialized layout

"+ SRAMs with init
+ specialized layout

Zynq FPGA ST 28nm IBM 45nm
FDSOI SOl

14

What were we doing?

Manually change RTL?

Obfuscates/specializes RTL

Use CAD tool scripts?

=

Many unsupported use cases

Python script to edit RTL

Not reusable/robust/composable [:

* from http://www.zoom-comics.com/wp-content/uploads/sites/36/2011/01/calvin-and-hobbes-faces.jpg, accessed 10/23/17
* from https://useravatar.services.amuniversal.com/user_avatars/avatars _gocomicsver3/3001000/3001618/IMG_7625.GIF, accessed 10/23/17

15

Realization: We need a software stack, but for hardware

projects
libraries E'Eu?&”no Lisrary B AR
language
|_clang |[@a ¢
| y—
compiler [_transforms IEi M
/ \ COMPILER INFRASTRUCTURE
| x86 -

platforms

Second-System-Syndrome: But... do we really need all that?

\

/' Sodor: 6451 loc \
/" Hwacha: 6953 loc |
BOOM: 8298 loc
RocketChip: 9578 loc N
Chisel: 19248 loc

~_ B

AN .
HW@? Fast.~
Librariese Simulations

Specification

@)
\&W

{

e
Production

LS

RTL Design

{;ﬁ

Validation

0

Noveh
Pr|m|t|ves

N

Verification

Generate
“Wire!

Bondings).

Information
ekl

Packaging

(7,

Reusable’
_Floorplans

A

Physical Design

¥
Automatic

Technology
Integration

27D

Tapeout

/

18

For impact, we need an ecosystem

[Verilog][Chisel][PyChisel]

: BIST/ITAG Stitching Early Area Estimation
' FPGA Snapshotting ASICSRAMS
FPGA Assertions Floorplanning Hints
FPGA FAME-1 ~ Retiming |

[Verilog][C++][Scala]

Developing, Porting, Code Reviews, Testing, and so forth

Spring 2015 &~ Designed FIRRTL Compiler

Summer 2015
Designed Chisel 3 Frontend

Fall 2015 N
Winter 2015 Ported RocketChip

spring 2016 | Ported Chisel Testers

Summer 2016 |~ Added Fixed-Point Type

Fall 2016 B 4
Added Analog Type hen il . ; -a;,;,
Winter 2016 e ckoania -:jack.bmlga@eecsbwieieredu:-
. Added withClock
Spring 2017

Summer 2017 KReIeased Chisel 3.0.0

Fall 2007 |~ Released FIRRTL 1.0.0

Chisel 3.0.0 and FIRRTL 1.0.0 have been released!

Projects
o FireSim - Datacenter Emulation on FPGAs
o Strober - Fast+Accurate Power Sims. for Long Programs
o Hurricane 2 - Multi-Core DVFS (Sub-Core)
Transformations
o Quick (and Semi-Accurate) Timing and Area Estimation
o Automatic Combinational Cycle Removal
o Snapshotting and Hardware Assertions for FPGAs

New Features

O

o O O

Hardware Types vs Hardware Components

New types (e.g. Complex, DspReal, Fixed-Point, Analog)
Chisel Library support (annotations)

Invalidate API for safer connections

Chisel 3
https://github.com/freechipsproject/chisel3/releases/tag/v3.0.
0

v3.0.0

©v3.00

o 78bfa07 "1 uchjrl released this 9 days ago

FIRRTL

https://github.com/freechipsproject/firrtl/releases/tag/v1.0.0

v1.0.0

< v1.0.0

1" uchjrl tagged this 11 days ago
- d4df8o0

21

Intel: F

40+
35
30

Cumulative Count

254

154

104

54

135 va.i0.inl <> TypeRepacker(DecoupledStage{accinl.io.acc_out), to
136 va.io.in2 <> TypeRepacker(DecoupledStage(accin2.is.acc_out),

va.lo.1inl.bits)
va.io.in2.bits)

accout.io.acc_data_in.bits)
Pt ee

AccParams) extends SDFActor(2,1) [

138 accout.io.acc_data i TypeRepacker Delaynudel Decoupledstage’va io.out), 18, 2).
139 JJaccout.ie.acc_ ypeRepacke oupledStage{va. ut), to = accout.ic.a
148

141 accinl.io.acc_in <> io0.acc_rd_reqgl

142 accin2.io.acc_in <= io.acc_

143 accout.io.acc_req_in <

144

Easll 1

146

147 + class VecAddMulDP[T <: UInt]{gen : T, veclen : Int)(implicit params :

148 = override lazy val io = IO(new ActorI0 {

149 val inl = In{Vec(vecLen, gen), 1}

158 val in2 = In{Vec(veclen, gen), 1)

151 val out = Qut(Vec(vecLen, gen}, 1)

152 b

153

154 - override def func = {

155 val add = Vec.tabulate(vecLen) {i io.inl.bits(i) + Lu ll'|2 bits(i) }
156 val mull = Vec.tabulate(veclen) {i => io.inl.bits(i) * add{i) }

157 val mul2 = Vec.tabulate{vecLen) {i => io.in2.bits(i) | add{\.) 1

158 val add2 = Vec.tabulate(vecLen) [i mull{i) + mul2(1) }

159 val mul3 = Vec.tabulate{veclen) {i => mull{i) * add2(i) }

168 val muld = Vec.tabulate(vecLen) {i mul2{i) * add2(i) }

161 val add3 = Vec.tabulate(vecLen) [i => mul3(i) + muld(i) }

162 io.out.bits := add3

163 1

164}

63
166 = class VecAddMulDPWStages[T <: Ulnt](gen : T, weclen :
167

168~ wval io = IO(new ActorIO {
169 val ing = In{UInt((gen.getWidth*vecLen).W), 1)

Int)(implicit params : AccParams) extends Module [

ast and Semi-A

ccurate FIRRTL Timer

Start Points

Slack Source

w
=3

DecoupledStage$out_bits_O#ps
-38 DecoupledStage$out_bits_l#ps
-38 DecoupledStage$out_bits 2#ps
-38 DecoupledStage$out bits 3#ps
-38 DecoupledStage$out bits d4#ps
-38 DecoupledStage$out bits S5#ps

Op Incr Required
connect ;] 38
connect ;] 38
add, ((16,16)) 5 38
tail, ((17)) (] 33
connect [:] 23
mul, ((16,16)) 8 33
connect -] 25
add, ((32,32)) 6 25
tail, ((33)) ;] 19
connect] 19
mul, ((32,32)) 10 19
connect] 9
add, ((64,64)) 7 9
tail, ({65}) 2] 2
connect ;] 2
mux, ((1}, (64)) 1 2

End Points

Slack Sink
-38 DecoupledPipe$DecoupledStage$out bits B#ns
-38 DecoupledPipesDecoupledStage$out_bits_l#ns
-38 DecoupledPipesDecoupledStage$out bits 2#ns
-38 DecoupledPipe$DecoupledStage$out bits 3#ns
-38 DecoupledPipesDecoupledStage$out bits 4#ns
-3

)

DecoupledPipe$DecoupledStagedout bits S#ns

Net
DecoupledStagesout bits B#ps
DecoupledStage$io_out_bits @
va$io_inl_bits_@

vas_T_254

va$ T 255

va$ T 272 @

va$ T 304

va$ T 314 0

va$ T 325

va$_T 326

va$ T 343 0

va$ T 354

vas T 364 0

vas T 396

vas T 397

vas T 414 @

PP

22

What had to change?

23

Emphasis on Clarity

———

Register of type Ulnt, width of 3
Register whose next cycle’s value is 3
Register whose initial value is 3
Register no initial value and width of 2

———

Chisel 2.0.0
Reg(UInt(3))

Chisel 3.0.0
Reg(UInt(3.W))
RegNext(3.U)
Reglnit(3.U)
Reg(chiselTypeOf(3.U))

Register of type Ulnt, width of 3
Register whose next cycle’s value is 3
Register whose initial value is 3
Register no initial value and width of 2

Less Error-Prone API’s

Chisel | def func[T<:Chisel.Data](other: T) = {
1200 io.out := Reg(null.asInstanceOf(T], next = other, null.asInstanceOf(T))

}

[info] [0.000] Elaborating design...
[info] [0.022] Done elaborating.

Chisel | def func[T<:Chisel.Data](other: T) = {
- 3.0.0 io.out := RegNext(other)

}

[info] [0.000] Elaborating design...
[info] [0.022] Done elaborating.

Lightweight Support for Multi-Clock/Reset

withReset(io.alternateReset) { <
val altRst = Reglnit(0.U(10.W))

withClock(io.alternateClock) { <

val altClk = Reglnit(0.U(10.W))

Everything in this scope with have
io.alternateReset as the reset

Everything in this scope with have
io.alternateClock as the clock

26

Exciting Future Work: The Unified Chisel Tester

[

Tester | | Device Under Test

)

The following image is a

DRAMATIZATION of real experiences

5 ‘
g :.1 .-: .II“ 4
P

(Current Chisel Testing Environment)

e fragmented Landscape
o BasicTester (Hardware Testing Hardware)
o PeekPokeTester (Interactive and Slow)
o AdvancedTester (Limited Concurrency)

e Unified Chisel Tester

o Lightweight, powerful, fast
o Multiple circuit drivers, multithreaded
o Integration with Verilator, VCS, Interpreter

e If you have thoughts - send them our way!

27

What had to change?

28

Documentation, Documentation, Documentation

Home

Jim Lawson edited this page 23 days ago - 30 revisions

Welcome to the Chisel 3 wiki!

If you are completely new to Chisel, check out A Short Users Guide to Chisel.
Chisel is constantly being improved. See the latest Release Notes.

For migrating from Chisel 2 to Chisel 3, check out Chisel3 vs Chisel2.

The ScalaDoc for Chisel3 is available at the API tab on the Chisel web site.

For useful design patterns, see the Cookbook.

For cool new features on the leading and bleeding edge, see Experimental Features.

If you're developing a Chisel library, see Developers.

Other interesting pages:

¢ Frequently Asked Questions

Edit New Page

-

Home 'd
Cookbook
Frequently Asked Questions

Troubleshooting

Printing in Chisel
A Short Users Guide to
Chisel

. Introduction
ii. Hardware Expressible in

Chisel

iii. Datatypes in Chisel

iv. Combinational Circuits
. Builtin Operators

i. Functional Abstraction
ii. Bundles and Vecs

. Ports

29

Bootcamps and Tutorials

- .l‘- [Lo]

= - -y - T " i y — — o - - =y —

|“|.'- CE 2.1 HITRIE ':I:Iﬂl.lll'l el Cewraparrd TLTLREETT | e 1w .

cHSew

Module 2.1: A Simple Chisel Module

E % = B B = & H BB

A Tiny Module

Lisn by, wa con deowrs rresiuls Sefinfore in Dol The: foicssryg aoress o m Thisesl poén la. Tror i bee ore speid, So, oo ormoonipul. ek,

ke | e el by o apal pen, B | rwpsemgd

il % el | &
Eldhd Tuny SELladadE Balula o
eal id = (IO | i Poosd Ld o
vl £ = Tapet|OCefld Wil

L LS AL dAET IR

FTISLok|PSLFaFEETI'REW TLEF{I11]

Thers ¥ @ i bl The Folesirey oopiars 0w B2 Feem o sech e in e ! e St o e iy
slaan Tiap srianids Helaim |
R b e Talahds @RS Ty
file 1o = ED0 .
[T R T e T B S Y S 30

maw Purdle |

Open-Development via Github Issues/Pull Requests

L] freechipsproject / chisel3 @ Unwatch~ 62 | yStar 243 YFork 76
Code Issues 78 {1 Pull requests 12 Projects 0 Wiki Insights Settings
Filters ~ is:pr is:open Labels Milestones
11 120pen v 369 Closed Author ~ Labels ~ Projects ~ Milestones ~ Reviews ~ Assignee~ Sort~
i1 Fixed X-pessimism in RRArbiter » (12

#724 opened 7 days ago by pentin-as = Review required

i1 Autoclone type O+ (114
#723 opened 11 days ago by ducky64 = Review required

1 [wip] BoringUtils / Synthesizable Cross Module References ® API Addition (2
#718 opened 25 days ago by seldridge » Review required Dof3

i1 Add issue and pull_request templates. v D14
#713 opened on Nov 3 by ucbjrl « Approved 3of8

i1 Aggregates can now be marked as literals. x 121
#694 opened on Sep 15 by grebe = Changes requested

Stack Overflow!

= stackoverflow Questions Developer Jobs Tags Users [chisel]

&

Tagged Questions info newest frequent votes active unanswered

Chisel is an open-source hardware construction language developed at UC Berkeley that supports advanced hardware
design using highly parameterized generators and layered domain-specific hardware languages.

learn more... top users synonyms

1 Floating Point Unit - Open Source Hardware Implementation
e Boy, do these guys at StackOverflow really make you think before even trying to ask a question here - having
0 a real stage fright writing this first question. | will provide some resources | found ...
answers

riscv chisel fpu asked Nov 20 at 23:47

42 views ! apaj
623

1 Parameterized FIFO in Chisel
vl | was going through the Chisel 2.2 Tutorial manual (| am aware that Chisel3 is out in BETA version, but | am
0 required to use Chisel2.2 for some extension of previously implemented modules). | have ...
anawers riscy chisel asked Nov 18 at 9:33
57 views w Abhishek Tyagi
48 = 10

- 2 @

200

questions tagged

chisel about»

Related Tags

scala =78
riscy x 37

hdl =17
verilog > 11
hardware = 11
sbf =7

fpga x5
digital-Hogic x5
build =3

uint = 3

more related tags

-

Ask Question

32

Chisel: Constructing Hardware in a
Scala Embedded Language

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee,
Andrew Waterman, Rimas Awilems John Wawrzynek Krste Asanovié

4

S Depanment UC Berkeley
p Izizas | joha |

‘berkoley, odu

ABSTRACT
1o thi o et el s Bt et
that using

hardware languages. By embedding Chisel in the Scala pro-
gramming language, we raise the level of hardware design ab-
straction by providing concepts including object orientation,
fanctional programming, parameterized types, and type in-
ference. Chisel can generate a highespeed C+—+-based cycle-
aecurate software simulato, or low-level Verilog designed to
map to either FPGAs or to a standard ASIC flow for syn-
thesis. "This paper presents Chisel, its embedding in Scala,
‘hardware examples, and results for C-++ simulation, Verilog
emulation and ASIC synthesis

Categories and Subject Descriptors
B.6.3 [Logic Design|: [Design Aids - automatic synthesis,
hardware description languages]

‘General Terms

Design, Languages, Performance

Keywords
CAD

1. INTRODUCTION
The dominant traditional hardware-description languages
(HDLs), Verilog and VHDL, were originally developed as
Jasdware simulation languages, and were only later adopted
as a basis for hardware synthesis. Because the semantics of
these languages are based around simulation, synthesizable
Remards evpported by ward DE-SC0003624, and
by Mierosaft (Award #024263) aod Intel (Award #026890)
g i by aicing Caing by U Discovery (Award
#DIGHT 10227,

Permission 1o make digital or hard copies of all or part of this work for
personal or classroom use is grantcd without fec provided that copics are
B0t mace or distribated for profitor commercial advantsge and that copies.
bear his notice and the full ciation on the first page. To copy alherwisc, 1o
Fepublist, 1 poston servers of to redistribute 10 liss, equies prior specific
permission an

DAC 2013, June 3
Copyright 2012 Al

2012, San Francisco, California, USA
M 97814503 1199-112/06._.S10.00

ifpa mink b 2 e oms oot e g o
plicating tool development and designer education. These
anguagen aloo Inck the powesTul abstraction fuclies that
are common in modern software languages, which leads to
low designer productivity by making it difficult to rense com-
ponents. Constructing officient hardware designs requires
extensive design-space exploration of alternative system mi-

architectures [9] but these traditional HDLs have limited
module generation facilities and are illsuited to producing
and composing the highly parameterized module generators
required to support, thorough desiga-space exploration. Re-
cent extensions such as System Verilog improve the type sys-
tem and parameterized generate facilities but still lack many
powerful programming language features.

To work around these limitations, one common approach
is to use another language as a macro processing language
for an underlying HDL. For example, Genesis2 uses Perl to
provide more flexible parameterization and elaboration of
hardware blocks written in System Verilog [3]. The language
called Verischemelog [6] provides a Scheme syntax for spec-
ifying modules in a similar format to Verilog. JHDL [1]
equates Java classes with modules. HML (7] uses standard
ML functions to wire together a circuit, These approaches
aliow familiar and powerful languages to be macro languages
for hardware netlists, but effectively require leaf components
of the design to be deseribed in the underlying HDL. This
combined approach s cumbersome, combining the poor ab-
straction facilities of the underlying HDL with a completely
different high-level programming model that does not un-
derstand hardware types and semantics.

on alarantivn approach is to begin from a domain-specific
application programming language from which a hardware

el is generated. Esterel (2] uses event-based statements
to program hardware for reactive systems. DIL [2] is an in-
termediate language targeted at stream processing and hard-
ware vitualization. Bluespec (3] supports a general concur-
rent computation model, based on guarded atomic actions.
While these ean provide geeat designer productivity when
the task in hand matehos the patiern eacoded in the appli-
cation programming model, they are a poor match for tasks
outside their domain. For example, the design of a pro-
grammable mieroprocessor s not well deseribed in a stream
programming model, and guarded atomic actions are not a
natural way to express a high-level DSP algorithm. Further-
more, in general it is diffieult to derive an effieient microar-
chitecture from a higher-level computation model, especially
if the goal is a programmable engine to run many applica-
tions, where the human designer would prefer 10 write a

Berkeley

UNIVERSITY OF CALIFORNIA

Microsoft

Research

I I H Bl Massachusetts

I I Institute of

Technology
05\ SCIenCe

1

\nst,‘,«uf
(S

(o4
A
g frrerreer
=

BERKELEY LAB

Lawrence Berkeley National Laboratory

% o~
Y NAISTY @

UNIVERSITY of
WASHINGTON

Stanford

University

of Denmark

DTU Technical University
>

=
=

TEXAS TECH

UNIVERSITY.

Norwegian University of
Science and Technology

BOSTON

UNIVERSITY

33

Active Users (That We Know Of)
@SlFlve fyStanford DR APER

University
| Berﬁeley = ®
) | Architecture ln e
:‘ﬁ)’ Research 0 e
l - Massachusetts —— DTU Technical University _\

e <o Of Denmark _, A

Institute of = =—= =—= NG
Technology E——— " E— - |

BERKELEY LAB

BAE SYSTEMS
lowRISC

INSPIRED WORK

34

OMé&! I HAVE 50 MANY
DATA, THIS IS MAKING
MY ALEORITHM

IT IS 50 DIFFICULT TO IMPLEMENT
MY ALEORITHM IN VERILOE.
THIS MEANS REDESIENING
EVERYTHINE/

IT IS EOIN&G TO TAKE

S0 MUCH TIME/

I CAN APPLY MY ALEO
DIRECTLY ON THE FPEA...
BUT IT UNDERSTAND
ONLY LOW LEVEL
LANGUAEE.

...AND [DON'T
EVEN KNOW

HARDWARE
PROGRAMING,

WHAOH!
HEY! HAVE YOU TRIED IT GENERATE VERILOG AND | CAN

EVEN LISE ALL ADVANTAGE
CHISEL P THAT SCALA HAS
IN My CODE. THIS IS
AWESOME/!!

THANK YOU
BERKELEY/

35

|deas for Governance? Maintenance? Workshops?

5 -

we WANT YOU!

Thanks to all Chiselers out there! (And many more!!)

. =y T 3 % o
| 1 ’ ; S\ ==
Ly, 1F. —
z o 1 b ==
5 - 5
2 . L g
ine - & s r J .
,‘ 7 3) = "_ - _ ’ 7’\‘ ‘ - -
= S sl M] o . <
- e e o S) ¥
-] 2 . - - by
B 3 », > 4 —)
i = @ <
- | ’ —
] 2
B~ .
|
)
|

S0 long (ASPIRE), and thanks for all the fish chips!

