Chisel Tutorial

Jonathan Bachrach, Krste Asanovi¢, John Wawrzynek
EECS Department, UC Berkeley
{jrb|krste|johnw}@eecs.berkeley.edu

October 26, 2012

1 Introduction

This document is a tutorial introduction to Chisel
(Constructing Hardware In a Scala Embedded Lan-
guage). Chisel is a hardware construction language
embedded in the high-level programming language
Scala. At some point we will provide a proper refer-
ence manual, in addition to more tutorial examples.
In the meantime, this document along with a lot of
trial and error should set you on your way to using
Chisel. Chisel is really only a set of special class def-
initions, predefined objects, and usage conventions
within Scala, so when you write a Chisel program you
are actually writing a Scala program. However, for
the tutorial we don’t presume that you understand
how to program in Scala. We will point out necessary
Scala features through the Chisel examples we give,
and significant hardware designs can be completed
using only the material contained herein. But as you
gain experience and want to make your code simpler
or more reusable, you will find it important to lever-
age the underlying power of the Scala language. We
recommend you consult one of the excellent Scala
books to become more expert in Scala programming.

Chisel is still in its infancy and you are likely to
encounter some implementation bugs, and perhaps
even a few conceptual design problems. However,
we are actively fixing and improving the language,
and are open to bug reports and suggestions. Even
in its early state, we hope Chisel will help designers
be more productive in building designs that are easy
to reuse and maintain.

Through the tutorial, we format commentary on our
design choices as in this paragraph. You should be
able to skip the commentary sections and still fully
understand how to use Chisel, but we hope you’ll find
them interesting.

We were motivated to develop a new hardware
language by years of struggle with existing hardware
description languages in our research projects and
hardware design courses. Verilog and VHDL were

developed as hardware simulation languages, and
only later did they become a basis for hardware syn-
thesis. Much of the semantics of these languages are
not appropriate for hardware synthesis and, in fact,
many constructs are simply not synthesizable. Other
constructs are non-intuitive in how they map to hard-
ware implementations, or their use can accidently lead
to highly inefficient hardware structures. While it is
possible to use a subset of these languages and yield
acceptable results, they nonetheless present a cluttered
and confusing specification model, particularly in an
instructional setting.

However, our strongest motivation for developing
a new hardware language is our desire to change the
way that electronic system design takes place. We
believe that it is important to not only teach students
how to design circuits, but also to teach them how
to design circuit generators—programs that auto-
matically generate designs from a high-level set of
design parameters and constraints. Through circuit
generators, we hope to leverage the hard work of de-
sign experts and raise the level of design abstraction
for everyone. To express flexible and scalable circuit
construction, circuit generators must employ sophis-
ticated programming techniques to make decisions
concerning how to best customize their output cir-
cuits according to high-level parameter values and
constraints. While Verilog and VHDL include some
primitive constructs for programmatic circuit genera-
tion, they lack the powerful facilities present in mod-
ern programming languages, such as object-oriented
programming, type inference, support for functional
programming, and reflection.

Instead of building a new hardware design lan-
guage from scratch, we chose to embed hardware con-
struction primitives within an existing language. We
picked Scala not only because it includes the program-
ming features we feel are important for building cir-
cuit generators, but because it was specifically devel-
oped as a base for domain-specific languages.

2 Hardware expressible in Chisel

The initial version of Chisel only supports the expres-
sion of synchronous RTL (Register-Transfer Level)
designs, with a single common clock. Synchronous
RTL circuits can be expressed as a hierarchical com-
position of modules containing combinational logic
and clocked state elements. Although Chisel assumes
a single global clock, local clock gating logic is au-
tomatically generated for every state element in the
design to save power.

Modern hardware designs often include multiple is-
lands of logic, where each island uses a different clock
and where islands must correctly communicate across
clock island boundaries. Although clock-crossing syn-
chronization circuits are notoriously difficult to de-
sign, there are known good solutions for most scenar-
ios, which can be packaged as library elements for use
by designers. As a result, most effort in new designs
is spent in developing and verifying the functional-
ity within each synchronous island rather than on
passing values between islands.

In its current form, Chisel can be used to describe
each of the synchronous islands individually. Ex-
isting tool frameworks can tie together these islands
into a complete design. For example, a separate outer
simulation framework can be used to model the assem-
bly of islands running together. It should be noted
that exhaustive dynamic verification of asynchronous
communications is usually impossible and that more
formal static approaches are usually necessary.

This version of Chisel also only supports binary
logic, and does not support tri-state signals.

We focus on binary logic designs as they constitute the
vast majority of designs in practice. We omit support
for tri-state logic in the current Chisel language as
this is in any case poorly supported by industry flows,
and difficult to use reliably outside of controlled hard
macros.

3 Datatypes in Chisel

Chisel datatypes are used to specify the type of val-
ues held in state elements or flowing on wires. While
hardware designs ultimately operate on vectors of
binary digits, other more abstract representations
for values allow clearer specifications and help the
tools generate more optimal circuits. In Chisel, a
raw collection of bits is represented by the Bits type.
Signed and unsigned integers are considered subsets
of fixed-point numbers and are represented by types
Fix and UFix respectively. Signed fixed-point num-
bers, including integers, are represented using two’s-
complement format. Boolean values are represented

as type Bool. Note that these types are distinct from
Scala’s builtin types such as Int. Additionally, Chisel
defines Bundles for making collections of values with
named fields (similar to structs in other languages),
and Vecs for indexable collections of values. Bundles
and Vecs will be covered later.

Constant or literal values are expressed using Scala
integers or strings passed to constructors for the

types:

Bits(1) // decimal 1-bit 1it from Scala Int.
Bits("ha") // hexadecimal 4-bit 1it from string.
Bits("ol2") // octal 4-bit lit from string.

Bits("b1010") // binary 4-bit lit from string.
Fix(5) //
Fix(-8) //
UFix(5) //

signed decimal 4-bit lit from Scala Int.
negative decimal 4-bit lit from Scala Int.
unsigned decimal 3-bit 1it from Scala Int.

Bool(true) //
Bool(false)

Bool lits from Scala lits.

Underscores can be used as separators in long
string literals to aid readability, but are ignored when
creating the value, e.g.:

Bits("h_dead_beef") // 32-bit lit of type Bits

By default, the Chisel compiler will size each con-
stant to the minimum number of bits required to hold
the constant, including a sign bit for signed types. Bit
widths can also be specified explicitly on literals, as
shown below:

Bits("ha", 8) // hexadecimal 8-bit 1it of type Bits
Bits("o012", 6) // octal 6-bit lit of type Bits
Bits("b1010", 12) // binary 12-bit lit of type Bits

Fix(5, 7) // signed decimal 7-bit lit of type Fix
UFix(5, 8) // unsigned decimal 8-bit lit of type UFix

For literals of type Bits and UFix, the value is zero-
extended to the desired bit width. For literals of type
Fix, the value is sign-extended to fill the desired bit
width. If the given bit width is too small to hold the
argument value, then a Chisel error is generated.

We are working on a more concise literal syntax
for Chisel using symbolic prefix operators, but are
stymied by the limitations of Scala operator overload-
ing and have not yet settled on a syntax that is actu-
ally more readable than constructors taking strings.

We have also considered allowing Scala literals to
be automatically converted to Chisel types, but this
can cause type ambiguity and requires an additional
import.

The Fix and UFix types will also later support
an optional exponent field to allow Chisel to auto-
matically produce optimized fixed-point arithmetic
circuits.

4 Combinational Circuits

A circuit is represented as a graph of nodes in Chisel.
Each node is a hardware operator that has zero or
more inputs and that drives one output. A literal,
introduced above, is a degenerate kind of node that
has no inputs and drives a constant value on its out-
put. One way to create and wire together nodes is
using textual expressions. For example, we could
express a simple combinational logic circuit using the
following expression:

(a &b) | (~c & d)

The syntax should look familiar, with & and | rep-
resenting bitwise-AND and -OR respectively, and ~
representing bitwise-NOT. The names a through d
represent named wires of some (unspecified) width.

Any simple expression can be converted directly
into a circuit tree, with named wires at the leaves and
operators forming the internal nodes. The final circuit
output of the expression is taken from the operator at
the root of the tree, in this example, the bitwise-OR.

Simple expressions can build circuits in the shape
of trees, but to construct circuits in the shape of ar-
bitrary directed acyclic graphs (DAGs), we need to
describe fan-out. In Chisel, we do this by naming
a wire that holds a subexpression that we can then
reference multiple times in subsequent expressions.
We name a wire in Chisel by declaring a variable.
For example, consider the select expression, which is
used twice in the following multiplexer description:

val sel =a | b
val out = (sel & inl) | (~sel & in0@)

The keyword val is part of Scala, and is used to name
variables that have values that won’t change. It is
used here to name the Chisel wire, sel, holding the
output of the first bitwise-OR operator so that the
output can be used multiple times in the second ex-
pression.

5 Builtin Operators

Chisel defines a set of hardware operators for the
builtin types shown in Table 1.

5.1 Bitwidth Inference

Users are required to set bitwidths of ports and regis-
ters, but otherwise, bit widths on wires are automat-
ically inferred unless set manually by the user. The
bit-width inference engine starts from the graph’s
input ports and calculates node output bit widths

from their respective input bit widths according to
the following set of rules:

operation bit width

Z=X+Yy wz = max(wx, wy)
zZ=X-Y wz = max(wx, wy)
z=x &y wz = max(wx, wy)

z = Mux(c, X, y) wz = max(wx, wy)
Z=Wwxy WZ = WX + wy

Z =X <<n wz = wx + maxNum(n)
Z =X >n wz = wx - minNum(n)
z = Cat(x, y) WZ = WX + wy

z = Fill(n, x) wz = wx *x maxNum(n)

where for instance wz is the bit width of wire 2, and
the & rule applies to all bitwise logical operations.
The bit-width inference process continues until no
bit width changes. Except for right shifts by known
constant amounts, the bit-width inference rules spec-
ify output bit widths that are never smaller than the
input bit widths, and thus, output bit widths either
grow or stay the same. Furthermore, the width of a
register must be specified by the user either explicitly
or from the bitwidth of the reset value. From these
two requirements, we can show that the bit-width
inference process will converge to a fixpoint.

Our choice of operator names was constrained by the
Scala language. We have to use triple equals === for
equality to allow the native Scala equals operator to
remain usable.

We are also planning to add further operators that
constrain bitwidth to the larger of the two inputs.

6 Functional Abstraction

We can define functions to factor out a repeated piece
of logic that we later reuse multiple times in a design.
For example, we can wrap up our earlier example of
a simple combinational logic block as follows:

def clb(a: Bits, b: Bits, c: Bits, d: Bits) =
(@ &b) | (~c &d)

where clb is the function which takes a, b, ¢, d as
arguments and returns a wire to the output of a
boolean circuit. The def keyword is part of Scala
and introduces a function definition, with each ar-
gument followed by a colon then its type, and the
function return type given after the colon following
the argument list. The equals (=) sign separates the
function argument list from the function definition.

We can then use the block in another circuit as
follows:

val out = clb(a,b,c,d)

|

Example

| Explanation

Bitwise operators. Valid on Bits, Fix, UFix, Bool.

val invertedX = ~x

val hiBits X & Bits("h_ffff_0000")
val flagsOut flagsIn | overflow
val flagsOut flagsIn ~ toggle

Bitwise-NOT
Bitwise-AND
Bitwise-OR

Bitwise-XOR

Bitwise reductions. Valid on Bits, Fix, and UFix. Returns Bool.

val hiBits x >> UFix(16)

val allSet = andR(x) AND-reduction
val anySet = orR(x) OR-reduction
val parity = xorR(x) XOR-reduction

| Equality comparison. Valid on Bits, Fix, UFix, and Bool. Returns Bool. \
val equ = x ===y Equality
val neq = x =y Inequality

| Shifts. Valid on Bits, Fix, and UFix. \
val twoToTheX = Fix(1l) << x Logical left shift.

Right shift (logical on Bits & UFix, arithmetic on Fix).

Bitfield manipulation. Valid on Bits, Fix, UFix, and Bool.

|

val xLSB = x(0) Extract single bit, LSB has index 0.

val xTopNibble = x(15,12) Extract bit field from end to start bit position.

val usDebt = Fill(3, Bits("hA")) Replicate a bit string multiple times.

val float = Cat(sign,exponent,mantissa) | Concatenates bit fields, with first argument on left.
Logical operations. Valid on Bools.

val sleep = !busy Logical NOT.

val hit = tagMatch && valid Logical AND.

val stall = srclbusy || src2busy Logical OR.

val out = Mux(sel, inTrue, inFalse) Two-input mux where sel is a Bool.

Arithmetic operations. Valid on Nums: Fix and UFix.

val sum =a + b
val diff = a - b
val prod = a x b
val div=a/b
val mod =a % b

Addition.
Subtraction.
Multiplication.
Division.
Modulus

Arithmetic comparisons. Valid on Nums: Fix

and UFix. Returns Bool.

val gt =a>b
val gte =a >=b
val lt =a<b
val lte = a <=b

Greater than.

Greater than or equal.
Less than.

Less than or equal.

Table 1: Chisel operators on builtin data types.

We will later describe many powerful ways to use
functions to construct hardware using Scala’s func-
tional programming support.

7 Bundles and Vecs

Bundle and Vec are classes that allow the user to ex-
pand the set of Chisel datatypes with aggregates of
other types.

Bundles group together several named fields of
potentially different types into a coherent unit, much
like a struct in C. Users define their own bundles by
defining a class as a subclass of Bundle:

class MyFloat extends Bundle {

val sign = Bool()
val exponent = Bits(width = 8)
val significand = Bits(width = 23)

}

val x
val xs

new MyFloat()
x.sign

A Scala convention is to capitalize the name of new
classes and we suggest you follow that convention in
Chisel too. The width named parameter to the Bits
constructor specificies the number of bits in the type.

Vecs create an indexable vector of elements, and
are constructed as follows:

// Vector of 5 23-bit signed integers.
val myVec = Vec(5) { Fix(width = 23) }

// Connect to one element of vector.
val reg3 = myVec(3)

(Note that we have to specify the type of the Vec ele-
ments inside the trailing curly brackets, as we have to
pass the bitwidth parameter into the Fix constructor.)

The set of primitive classes (Bits,Fix,UFix,Bool)
plus the aggregate classes (Bundles and Vecs) all in-
herit from a common superclass, Data. Every object
that ultimately inherits from Data can be represented
as a bit vector in a hardware design.

Bundles and Vecs can be arbitrarily nested to build
complex data structures:

class BigBundle extends Bundle {

// Vector of 5 23-bit signed integers.
val myVec = Vec(5) { Fix(width = 23) }
val flag = Bool()

// Previously defined bundle.

val f = new MyFloat()

}

Note that the builtin Chisel primitive and aggre-
gate classes do not require the new when creating
an instance, whereas new user datatypes will. A
Scala apply constructor can be defined so that a user

datatype also does not require new, as described in
Section 14.

8 Ports

Ports are used as interfaces to hardware components.
A port is simply any Data object that has directions
assigned to its members.

Chisel provides port constructors to allow a di-
rection to be added (input or output) to an object at
construct time. Primitive port constructors take the
direction as the first argument (where the direction is
INPUT or OUTPUT) and the number of bits as the second
argument (except booleans which are always one bit).

An example port declaration is as follows:

class FIFOIO extends Bundle {

val ready = Bool(OUTPUT)
val data = Bits(INPUT, 32)
val valid = Bool(INPUT)

}

After defining FIFOInput, it becomes a new type that
can be used as needed for component interfaces or
for named collections of wires.

The direction of an object can also be assigned at
instantation time:

class ScaleIO extends Bundle {

val in = new MyFloat().asInput
val scale = new MyFloat().asInput
val out = new MyFloat().asOutput

}

The methods asInput and asOutput force all compo-
nents of the data object to the requested direction.

By folding directions into the object declarations,
Chisel is able to provide powerful wiring constructs
described later.

9 Components

In Chisel, components are very similar to modules in
Verilog, defining a hierarchical structure in the gener-
ated circuit. The hierarchical component namespace
is accessible in downstream tools to aid in debugging
and physical layout. A user-defined component is
defined as a class which:

e inherits from Component,

e contains an interface stored in a port field named
io, and

e wires together subcircuits in its constructor.

As an example, consider defining your own two-
input multiplexer as a component:

class Mux2 extends Component {
val io = new Bundle{

val sel = Bits(INPUT, 1)
val in0® = Bits(INPUT, 1)
val inl = Bits(INPUT, 1)
val out = Bits(OUTPUT, 1)
}
io.out := (io.sel & io.inl) | (~io.sel & io0.in0@)

}

The wiring interface to a component is a collection
of ports in the form of a Bundle. The interface to the
component is defined through a field named io. For
Mux2, io is defined as a bundle with four fields, one
for each multiplexer port.

The := assignment operator, used here in the body
of the definition, is a special operator in Chisel that
wires the input of left-hand side to the output of the
right-hand side.

9.1 Component Hierarchy

We can now construct circuit hierarchies, where
we build larger components out of smaller sub-
components. For example, we can build a 4-input
multiplexer component in terms of the Mux2 compo-
nent by wiring together three 2-input multiplexers:

class Mux4 extends Component {
val io = new Bundle {

val in®@ = Bits(INPUT, 1)
val inl = Bits(INPUT, 1)
val in2 = Bits(INPUT, 1)
val in3 = Bits(INPUT, 1)
val sel = Bits(INPUT, 2)
val out = Bits(OUTPUT, 1)
}
val m0 = new Mux2()
m@.io.sel := io.sel(0)
m0.io.in® := io0.in@; mO.io.inl := io.inl
val ml = new Mux2()
ml.io.sel := io.sel(0)
ml.io.in@ := io.in2; ml.io.inl := io.in3

Mux2()
io.sel(1)
mO.io.out; m3.io.inl

val m3 = new
m3.io.sel :=

m3.1i0.1in0 := 1= ml.io.out

io.out := m3.io.out

We again define the component interface as io and
wire up the inputs and outputs. In this case, we cre-
ate three Mux2 children components, using the Scala
new keyword to create a new object. We then wire
them up to one another and to the ports of the Mux4
interface.

— inputs —
Chisel DUT

< outputs —

Figure 1: DUT run in Tester object in Scala with stdin
and stdout connected

10 Running and Testing Exam-
ples

Now that we have defined components, we will dis-
cuss how we actually run and test a circuit. Chisel
translates into either C++ or Verilog. In order to build
a circuit we need to call chiselMain:

object tutorial {
def main(args: Array[String]) = {
chiselMain(args, () => new Mux2())
}
}

Testing is a crucial part of circuit design, and thus
in Chisel we include a mechanism for testing cir-
cuits by providing test vectors within Scala using
subclasses of the Tester class:

class Tester[T <: Component]
(val c: T, val testNodes: Array[Node])

which binds a tester to a component, and where spec-
ify nodes to test, and finally where users write a
defTests function. The definition for defTests is:

def defTests(body: => Boolean)

where testNodes are the graph nodes that will be
input to and output from the DUT, and where users
write calls to step in the body. Users connect tester
instances to components using:

object chiselMainTest {
def apply[T <: Component]
(args: Array[String], comp:
tester: T => Tester[T]): T

() = T)(
}

When -test is given as an argument to chiselMain,
a tester instance runs the Design Under Test (DUT)
is as a process with stdin and stdout connected so
that inputs can be sent to the DUT and outputs can
received from the DUT as shown in Figure 1.

def step(vars: HashMap[Node, Node]): Boolean

where vars is a mapping of test nodes to literals,
with assignments to input nodes being sent to the
DUT and assignments to non-input nodes being in-
terpreted as expected values. test first sends inputs
specifed in vars, steps the DUT and then either com-
pares expected values from vars or sets vars for test
nodes without entries in vars. The following is an
example for defining tests for Mux2:

class Mux2Tests(c: Mux2)
extends Tester(c, Array(c.io)) {
defTests {
var allGood = true
val n = pow(2, 3).toInt
val vars = new HashMap[Node, Nodel]()
for (s <- 0 until 2) {

for (i@ <- 0 until 2) {
for (il <- 0 until 2) {
vars(c.io.sel) = Bits(s)
vars(c.io.inl) = Bits(il)
vars(c.io.in@) = Bits(i0)
vars(c.io.out) = Bits(if (s == 1) il else i0)
allGood = step(vars) && allGood
i}
allGood

}
}

and the following shows how it is invoked:

chiselMainTest(args + "--test",
c => new Mux2Tests(c)

}

() => new Mux2()){

Other command arguments are as follows:

--targetDir target pathname prefix
--genHarness generate harness file for C++
--backend v generate verilog

--backend ¢ generate C++ (default)

--vcd enable vcd dumping

- -debug put all wires in class file

11 State Elements

The simplest form of state element supported by
Chisel is a positive-edge-triggered register, which
can be instantiated functionally as:

Reg(in)

This circuit has an output that is a copy of the input
signal in delayed by one clock cycle. Note that we do
not have to specify the type of Reg as it will be auto-
matically inferred from its input when instantiated in
this way. In the current version of Chisel, clock and
reset are global signals that are implicity included
where needed.

Using registers, we can quickly define a number of
useful circuit constructs. For example, a rising-edge
detector that takes a boolean signal in and outputs

true when the current value is true and the previous
value is false is given by:

def risingedge(x: Bool) = x && !Reg(x)

Counters are an important sequential circuit. To
construct an up-counter that counts up to a maxi-
mum value, max, then wraps around back to zero (i.e.,
modulo max+1), we write:

def counter(max: UFix) = {
val x = Reg(resetVal = UFix(0, max.getWidth))
X = Mux(x == max, UFix(0), x + UFix(1))

X

}

The counter register is created in the counter func-
tion with a reset value of 0 (with width large enough
to hold max), to which the register will be initialized
when the global reset for the circuit is asserted. The
:= assignhment to x in counter wires an update combi-
national circuit which increments the counter value
unless it hits the max at which point it wraps back to
zero. Note that when x appears on the right-hand
side of an assigment, its output is referenced, whereas
when on the right-hand side, its input is referenced.

Counters can be used to build a number of useful
sequential circuits. For example, we can build a pulse
generator by outputting true when a counter reaches
Zero:

// Produce pulse every n cycles.
def pulse(n: UFix) = counter(n - UFix(1l)) === UFix(0)

A square-wave generator can then be toggled by the
pulse train, toggling between true and false on each
pulse:

// Flip internal state when input true.
def toggle(p: Bool) = {

val x = Reg(resetVal = Bool(false))

x = Mux(p, 'x, x)

X

}

// Square wave where each half cycle has given period.
def squareWave(period: UFix) = toggle(pulse(period))

11.1 Forward Declarations

Purely combinational circuits cannot have cycles be-
tween nodes, and Chisel will report an error if such
a cycle is detected. Because they do not have cycles,
combinational circuits can always be constructed in a
feed-forward manner, by adding new nodes whose
inputs are derived from nodes that have already been
defined. Sequential circuits naturally have feedback
between nodes, and so it is sometimes necessary to
reference an output wire before the producing node

has been defined. Because Scala evaluates program
statements sequentially, we allow data nodes to serve
as a wire providing a declaration of a node that can
be used immediately, but whose input will be set later.
For example, in a simple CPU, we need to define the
pcPlus4 and brTarget wires so they can be referenced
before defined:

val pcPlus4
val brTarget

UFix()
UFix ()

val pcNext Mux(io.ctl.pcSel, brTarget, pcPlus4)

val pcReg Reg(data = pcNext, resetVal = UFix(0, 32))
pcPlus4 pcReg + UFix(4)

brTarget = addOut

The wiring operator := is used to wire up the connec-
tion after pcReg and addOut are defined.

11.2 Conditional Updates

In our previous examples using registers, we sim-
ply wired their inputs to combinational logic blocks.
When describing the operation of state elements, it
is often useful to instead specify when updates to
the registers will occur and to specify these updates
spread across several separate statements. Chisel
provides conditional update rules in the form of the
when construct to support this style of sequential logic
description. For example,

val r = Reg() { UFix(16) }
when (c === UFix(0)) {
r :=r + UFix(1)

}

where register r is updated at the end of the current
clock cycle only if c is zero. The argument to when is
a predicate circuit expression that returns a Bool. The
update block following when can only contain update
statements using the assignment operator :=, simple
expressions, and named wires defined with val.

In a sequence of conditional updates, the last con-
ditional update whose condition is true takes priority.
For example,

when (cl) { r
when (c2) { r

Bits(1) }
Bits(2) }

leads to r being updated according to the following
truth table:

cl |2 |r

0 0 | r | runchanged

0 1|2

1 0|1

1 | 1 |2 | c2takes precedence over cl

Figure 2 shows how each conditional update can
be viewed as inserting a mux before the input of a

Initial values
0 0 el

when (cl)
{r :=el}
when (c2)
{ r :=e2}
enable inv
clock] r
ot1t‘*

Figure 2: Equivalent hardware constructed for con-
ditional updates. Each when statement adds another
level of data mux and ORs the predicate into the
enable chain. The compiler effectively adds the termi-
nation values to the end of the chain automatically.

register to select either the update expression or the
previous input according to the when predicate. In
addition, the predicate is OR-ed into a firing signal
that drives the load enable of the register. The com-
piler places initialization values at the beginning of
the chain so that if no conditional updates fire in a
clock cycle, the load enable of the register will be
deasserted and the register value will not change.

Chisel provides some syntactic sugar for other
common forms of conditional update. The unless
construct is the same as when but negates its condi-
tion. In other words,

unless (c) { body }

is the same as

when ('c) { body }

The update block can target multiple registers, and
there can be different overlapping subsets of registers
present in different update blocks. Each register is
only affected by conditions in which it appears. For
example:

r := Fix(3); s := Fix(3)
when (cl) { r := Fix(1); s := Fix(1) }
when (c2) { r := Fix(2) }

leads to r and s being updated according to the fol-
lowing truth table:

// r updated in c2 block, s at top level.

-
= o -

2 3
11
2 1

We are considering adding a different form of condi-
tional update, where only a single update block will
take effect. These atomic updates are similar to Blue-
spec guarded atomic actions.

Conditional update constructs can be nested and
any given block is executed under the conjunction of
all outer nesting conditions. For example,

when (a) { when (b) { body } }

is the same as:

when (a & b) { body }

Conditionals can be chained together using when,
.elsewhen, .otherwise corresponding to if, else if
and else in Scala. For example,

when (cl) { ul }
.elsewhen (c2) { u2 }
.otherwise { ud }

is the same as:

when (cl) { ul }
when (!'cl && c2) { u2 }
when (!(cl || c2)) { ud }

We introduce the switch statement for conditional
updates involving a series of comparisons against a
common key. For example,

switch(idx) {

is(vl) { ul }
is(v2) { u2 }
}

is equivalent to:

vl) { ul}
v2) {u2}

when (idx
.elsewhen (idx

Chisel also allows a Wire, i.e., the output of some
combinational logic, to be the target of conditional up-
date statements to allow complex combinational logic
expressions to be built incrementally. Chisel does
not allow a combinational output to be incompletely
specified and will report an error if an unconditional
update is not encountered for a combinational output.

In Verilog, if a procedural specification of a combina-
tional logic block is incomplete, a latch will silently be
inferred causing many frustrating bugs.

It could be possible to add more analysis to the
Chisel compiler, to determine if a set of predicates

covers all possibilities. But for now, we require a
single predicate that is always true in the chain of
conditional updates to a Wire.

11.3 Finite State Machines

A common type of sequential circuit used in digital
design is a Finite State Machine (FSM). An example
of a simple FSM is a parity generator:

class Parity extends Component {
val io = new Bundle {
val in = Bool(dir
val out = Bool(dir = OUTPUT) }
val s_even :: s_odd :: Nil = Enum(2){ UFix() }
val state = Reg(resetVal = s_even)
when (io.in) {
when (state === s_even) { state :=
when (state s_odd) { state :=
}

io.out

INPUT)

s_odd }
s_even }

1= (state s_odd)

where Enum(2) { UFix() } generates two UFix literals
and where the states are updated when inis true. Itis
worth noting that all of the mechanisms for FSMs are
built upon registers, wires, and conditional updates.

Below is a more complicated FSM example which
is a circuit for accepting money for a vending ma-
chine:

class VendingMachine extends Component {

val io = new Bundle {
val nickel = Bool(dir = INPUT)
val dime = Bool(dir = INPUT)
val rdy = Bool(dir = OUTPUT) }
val s_idle :: s.5 :: s.10 :: s_15 :: s_ok :: Nil =

Enum(5){ UFix() }
val state = Reg(resetVal = s_idle)
when (state s_idle) {

when (io.nickel) { state := s_5 }
when (io.dime) { state :=s_.10 }
}
when (state === s_5) {
when (io.nickel) { state := s_10 }
when (io.dime) { state :=s_15 }
}
when (state === s_10) {
when (io.nickel) { state := s_15 }
when (io.dime) { state := s_ok }
}
when (state === s_15) {
when (io.nickel) { state := s_ok }
when (io.dime) { state := s_ok }
}
when (state === s_ok) {
state := s_idle
}
io.rdy := (state === s_ok)

}

Here is the vending machine FSM defined with
switch statement:

class VendingMachine extends Component {

val io = new Bundle {
val nickel = Bool(dir = INPUT)
val dime = Bool(dir = INPUT)
val rdy = Bool(dir = OUTPUT) }
val s_idle :: s_5 :: s_10 :: s_15 :: s_ok :: Nil =
Enum(5){ UFIx() }
val state = Reg(resetVal = s_idle)
switch (state) {
is (s_idle) {
when (io.nickel) { state := s_5 }
when (io.dime) { state :=s.10 }
} is (s.5) {
when (io.nickel) { state := s_10 }
when (io.dime) { state :=s_15 }
} is (s_.10) {
when (io.nickel) { state := s_15 }
when (io.dime) { state := s_ok }
} is (s_15) {
when (io.nickel) { state := s_ok }
when (io.dime) { state := s_ok }
} is (s_ok) {
state := s_idle
}
}
io.rdy := (state === s_ok)

}

12 Memories

Chisel provides facilities for creating both read only
and read /write memories.

121 ROM

Users can define read only memories with a Vec:

Vec(inits: Seq[T]) (type: =>T)
Vec(inits: Tx) (type: => T)

where inits is a sequence of initial Data literals that
initialize the ROM and define the element type. For
example, users can create a small ROM initialized
to 1, 2, 4, 8 and loop through all values using a
counter as an address generator as follows:

val i = Array(UFix (1), UFix(2), UFix(4), UFix(8))
val m = Vec(i){ UFix(width = 32) }
val r = m(counter(UFix(i.length)))

We can create an n value sine lookup table using a
ROM initialized as follows:

def sinTable (amp: Double, n: Int) = {
val times =
Range(®, n, 1).map(i => (ix2*Pi)/(n.toDouble-1)
val inits =
times.map(t => Fix(round(amp * sin(t))))
Vec(inits){ Fix(width = 32) }
}
def sinWave (amp: Double, n: Int) =
sinTable(amp, n)(counter(UFix(n))

- Pi)

10

where amp is used to scale the fixpoint values stored
in the ROM.

12.2 Mem

Memories are given special treatment in Chisel since
hardware implementations of memory have many
variations, e.g., FPGA memories are instantiated
quite differently from ASIC memories. Chisel defines
a memory abstraction that can map to either sim-
ple Verilog behavioral descriptions, or to instances
of memory modules that are available from exter-
nal memory generators provided by foundry or IP
vendors.

Chisel supports random-access memories via the
Mem construct. Writes to Mems are positive-edge-
triggered and reads are either combinational or
positive-edge-triggered.
object Mem {

def apply[T <: Data](depth: Int,

seqRead: Boolean false)
(type: => T): Mem

}

class Mem[T <: Data](depth: Int,
seqRead: Boolean false,
type: () == T)
extends Updateable {
def apply(idx: UFix): T
}

Ports into Mems are created by applying a UFix
index. A 32-entry register file with one write port and
two combinational read ports might be expressed as
follows:

val rf = Mem(32) { UFix(width = 64) }
when (wen) { rf(waddr) := wdata }

val doutl = rf(waddrl)

val dout2 = rf(waddr2)

If the optional parameter seqRead is set, Chisel will
attempt to infer sequential read ports when a Reg is
assigned the output of a Mem. A one-read, one-write
SRAM might be described as follows:

val ramlrlw =
Mem(1024, seqRead = true) { Bits(width = 32) }
val dout = Reg() { Bits() }
when (wen) { ramlrlw(waddr) := wdata }
when (ren) { dout ramlrlw(raddr) }

Single-ported SRAMs can be inferred when the
read and write conditions are mutually exclusive in
the same when chain:

val ramlp =

Mem(1024, seqRead = true) { Bits(width = 32) }
val dout = Reg() { Bits() }
when (wen) { ramlp(waddr) := wdata }

.elsewhen (ren) { dout := ramlp(raddr) }

If the same Mem address is both written and se-
quentially read on the same clock edge, or if a se-
quential read enable is cleared, then the read data is
implementation-defined.

Mem also supports write masks for subword
writes. A given bit is written if the corresponding
mask bit is set.

val ram = Mem(256) { Bits(width = 32) }
when (wen) { ram.write(waddr, wdata, wmask) }

13 Interfaces and Bulk Connec-
tions

For more sophisticated components it is often use-
ful to define and instantiate interface classes while
defining component IO. First and foremost, interface
classes promote reuse allowing users to capture once
and for all common interfaces in a useful form. Sec-
ondly, interfaces allow users to dramatically reduce
wiring by supporting bulk connections between pro-
ducer and consumer components. Finally, users can
make changes in large interfaces in one place reduc-
ing the number of updates required when adding or
removing pieces of the interface.

13.1 Port Classes, Subclasses, and Nest-
ing

As we saw earlier, users can define their own inter-
faces by defining a class that subclasses Bundle. For
example, a user could define a simple link for hand-
shaking data as follows:

class SimpleLink extends Bundle {
val data = Bits(16, OUTPUT)
val rdy Bool (OUTPUT)

}

We can then extend SimpleLink by adding parity bits
using bundle inheritance:

class PLink extends SimpleLink {
val parity = Bits(5, OUTPUT)
}

In general, users can organize their interfaces into
hierarchies using inheritance.

From there we can define a filter interface by nest-
ing two PLinks into a new FilterIO bundle:

class FilterIO extends Bundle {
val x = new PLink().flip
val y = new PLink()

}

11

where flip recursively changes the “gender” of a
bundle, changing input to output and output to in-
put.

We can now define a filter by defining a filter class
extending component:

class Filter extends Component {
val io = new FilterIO()

}

where the io field contains FilterIO.

13.2 Bundle Vectors

Beyond single elements, vectors of elements form
richer hierarchical interfaces. For example, in order
to create a crossbar with a vector of inputs, producing
a vector of outputs, and selected by a UFix input, we
utilize the Vec constructor:

class CrossbarIo(n: Int) extends Bundle {
val in = Vec(n){ new PLink().flip() }
val sel = UFix(INPUT, sizeof(n))
val out = Vec(n){ new PLink() }

}

where Vec takes a size as the first argument and a
block returning a port as the second argument.

13.3 Bulk Connections

We can now compose two filters into a filter block as
follows:

class Block extends Component {

val io = new FilterIO()
val fl = new Filter()
val f2 = new Filter()

fl.io.x <> io.x
fl.io.y <> f2.i0.x
f2.i0.y <> io.y

}

where <> bulk connects interfaces of opposite gender
between sibling components or interfaces of same
gender between parent/child components. Bulk con-
nections connect leaf ports of the same name to each
other. After all connections are made and the circuit
is being elaborated, Chisel warns users if ports have
other than exactly one connection to them.

13.4 Interface Views

Consider a simple CPU consisting of control path
and data path subcomponents and host and memory
interfaces shown in Figure 3. In this CPU we can
see that the control path and data path each connect

imem

i -

Figure 3: Simple CPU involving control and data path
subcomponents and host and memory interfaces.

only to a part of the instruction and data memory
interfaces. Chisel allows users to do this with par-
tial fulfillment of interfaces. A user first defines the
complete interface to a ROM and Mem as follows:

class RomIo extends Bundle {
val isVal = Bool(INPUT)
val raddr = UFix(INPUT, 32)
val rdata = Bits(OUTPUT, 32)
}
class RamIo extends RomIo {
val isWr = Bool(INPUT)
val wdata = Bits(INPUT, 32)
}

Now the control path can build an interface in terms
of these interfaces:

class CpathIo extends Bundle {
val imem = RomIo().flip()
val dmem = RamIo().flip()

}

and the control and data path components can be
built by partially assigning to this interfaces as fol-
lows:

class Cpath extends Component {
val io = new CpathIo();

io.imem.isVal := ...;
io.dmem.isvVal := ...;
io.dmem.isWr := ...;

class Dpath extends Component {
val io = new DpathIo();

io.imem.raddr := ...;
io.dmem.raddr := ...;
io.dmem.wdata := ...;

}

We can now wire up the CPU using bulk connects as
we would with other bundles:

class Cpu extends Component {
val io = new Cpulo()
val ¢ = new CtlPath()
val d = new DatPath()
.i0.ctl <> d.io.ctl
.io.dat <> d.io.dat
.io.imem <> io.imem
.io.imem <> io.imem
.io.dmem <> io.dmem
.io.dmem <> io.dmem
.io.host <> io.host

o o n Qo 0o o0

}

Repeated bulk connections of partially assigned con-
trol and data path interfaces completely connect up
the CPU interface.

14 Functional Creation of Compo-
nents

It is also useful to be able to make a functional inter-
face for component construction. For instance, we
could build a constructor that takes multiplexer in-
puts as parameters and returns the multiplexer out-
put:

object Mux2 {
def apply (sel: Bits, in@: Bits, inl: Bits) = {

val m = new Mux2()
m.io.in@ := in0d
m.io.inl := inl
m.io.sel := sel
m.io.out

}
}

where object Mux2 creates a Scala singleton object
on the Mux2 component class, and apply defines a
method for creation of a Mux2 instance. With this Mux2
creation function, the specification of Mux4 now is
significantly simpler.

class Mux4 extends Component {

val io = new Bundle {
val in® = Bits(INPUT, 1)
val inl = Bits(INPUT, 1)
val in2 = Bits(INPUT, 1)
val in3 = Bits(INPUT, 1)
val sel = Bits(INPUT, 2)
val out = Bits(OUTPUT, 1)

12

}

io.out := Mux2(io.sel(1),

Mux2(io.sel(@0), io.in@, io.inl),
Mux2(io.sel(0), io.in2, io.in3))

Selecting inputs is so useful that Chisel builds it in
and calls it Mux. However, unlike Mux2 defined above,
the builtin version allows any datatype on in@ and
inl as long as they have a common super class. In
Section 15 we will see how to define this ourselves.

Chisel provides MuxCase which is an n-way Mux

MuxCase(default, Array(cl -> a, c2 -> b, ...))

where each condition / value is represented as a tuple
in a Scala array and where MuxCase can be translated
into the following Mux expression:

Mux(cl, a, Mux(c2, b, Mux(..., default)))

Chisel also provides MuxLookup which is an n-way
indexed multiplexer:

MuxLookup(idx, default,

Array(UFix(0) -> a, UFix(1l) -> b, ...))

which can be rewritten in terms of:MuxCase as follows:

MuxCase(default,
Array((idx
(idx

UFix(0)) -> a,
UFix(1)) -> b, ...))

Note that the cases (eg. c1, c2) must be in parentheses.

15 Polymorphism and Parameter-
ization

Scala is a strongly typed language and uses parame-
terized types to specify generic functions and classes.
In this section, we show how Chisel users can de-
fine their own reusable functions and classes using
parameterized classes.

This section is advanced and can be skipped at first
reading.

15.1 Parameterized Functions

Earlier we defined Mux2 on Bool, but now we show
how we can define a generic multiplexer function.
We define this function as taking a boolean condition
and con and alt arguments (corresponding to then
and else expressions) of type T:

def Mux[T <: Bits](c: Bool, con: T, alt: T): T { ... }

where T is required to be a subclass of Bits. Scala
ensures that in each usage of Mux, it can find a com-
mon superclass of the actual con and alt argument
types, otherwise it causes a Scala compilation type
error. For example,

Mux(c, UFix(10), UFix(11))

yields a UFix wire because the con and alt arguments
are each of type UFix.

We now present a more advanced example of pa-
rameterized functions for defining an inner product
FIR digital filter generically over Chisel Num’s. The in-
ner product FIR filter can be mathematically defined

as:
ylt] :ij * 5[t — j] (1)

where z is the input and w is a vector of weights. In
Chisel this can be defined as:

def innerProductFIR[T <: Num] (w: Array[Int], x: T) = {
val delays = Range(0, w.length).map(i => Num(w(i)) *
delay(x, 1))
delays.reduceRight(_ + _)
}

def delay[T <: Bits](x: T, n:
if (n == 0) x else Reg(delay(x, n -

Int): T =
1))

where delay creates a n cycle delayed copy of its
input and foldRight constructs a reduction circuit
given a binary combiner function f. In this case,
foldRight creates a summation circuit. Finally, the
innerProductFIR function is constrained to work on
inputs of type Num where Chisel multiplication and
addition are defined.

15.2 Parameterized Classes

Like parameterized functions, we can also parameter-
ize classes to make them more reusable. For instance,
we can generalize the Filter class to use any kind of
link. We do so by parameterizing the FilterI0 class
and defining the constructor to take a zero argument
type constructor function as follow:

class FilterIO[T <: Datal()(type: => T) extends Bundle {
val x = type.asInput.flip
val y = type.asOutput

}

We can now define Filter by defining a component
class that also takes a link type constructor argument
and passes it through to the FilterIO0 interface con-
structor:

class Filter[T <: Datal()(type: => T) extends Component {
val io = new FilterIO(){ type }

13

}

We can now define a PLink based Filter as follows:

val f = new Filter(){ new PLink() }

where the curly braces { } denote a zero argument
function (aka thunk) that in this case creates the link
type.

A generic FIFO could be defined as shown in Fig-
ure 4 and used as follows:

class DataBundle extends Bundle {
val A = UFix(width = 32)
val B = UFix(width = 32)

}

object FifoDemo {
def apply () =
}

new Fifo(32){ new DataBundle }

class Fifo[T <: Data] (n:
extends Component {
val io = new Bundle {

Int) (type: => T)

val eng_val = Bool(INPUT)
val enqg_rdy = Bool(OUTPUT)
val deqg_val = Bool(OUTPUT)
val deq_rdy = Bool(INPUT)
val eng_dat = type.asInput
val deq_dat = type.asOutput
}
val eng_ptr = Reg(resetVal = UFix(0, sizeof(n)))
val deq_ptr = Reg(resetVal = UFix(0, sizeof(n)))
val is_full = Reg(resetVal = Bool(false))
val do_enq = io.eng_rdy &% io.eng_val
val do_deq = io.deq_rdy && io.deq_val
val is_empty = lis_full && (eng_ptr === deq_ptr)
val deq_ptr_inc = deq_ptr + UFix(1)
val eng_ptr_inc = eng_ptr + UFix(1)
val is_full_next =
Mux(do_enq && ~do_deq && (eng_ptr_inc === deq_ptr),

Bool(true),
Mux(do_deq && is_full, Bool(false), is_full))

eng_ptr := Mux(do_enq, eng_ptr_inc, eng_ptr)
deq_ptr := Mux(do_deq, degq_ptr_inc, deq_ptr)
is_full := is_full_next

val ram = Mem(n)

when (do_enq) {
ram(eng_ptr) :=

}

io.eng_rdy := !is_full

io.deg_val := !is_empty

ram(deq_ptr) <> io.deq_dat

io.eng_dat

Figure 4: Parameterized FIFO example.

It is also possible to define a generic decoupled
interface:

class FIFOIO[T <: Data]()(data: => T)
extends Bundle {
val ready = Bool(INPUT)

val valid =
val bits =

}

Bool(OUTPUT)
data.asOutput

This template can then be used to add a handshaking
protocol to any set of signals:

class DecoupledDemo
extends FIFOIO()(new DataBundle)

The FIFO interface in Figure 4 can be now be simpli-
fied as follows:

class Fifo[T <: Data] (n: Int)(data: => T)
extends Component {
val io = new Bundle {
val enq = new FIFOIO()(data).flip()
val deq = new FIFOIO()(data)
}

16 Acknowlegements

Many people have helped out in the design of Chisel,
and we thank them for their patience, bravery, and
belief in a better way. Many Berkeley EECS students
in the Isis group gave weekly feedback as the de-
sign evolved including but not limited to Yunsup
Lee, Andrew Waterman, Scott Beamer, Chris Celio,
etc. Yunsup Lee gave us feedback in response to
the first RISC-V implementation, called TrainWreck,
translated from Verilog to Chisel. Andrew Waterman
and Yunsup Lee helped us get our Verilog backend
up and running and Chisel TrainWreck running on
an FPGA. Brian Richards was the first actual Chisel
user, first translating (with Huy Vo) John Hauser’s
FPU Verilog code to Chisel, and later implementing
generic memory blocks. Brian gave many invaluable
comments on the design and brought a vast expe-
rience in hardware design and design tools. Chris
Batten shared his fast multiword C++ template li-
brary that inspired our fast emulation library. Huy
Vo became our undergraduate research assistant and
was the first to actually assist in the Chisel imple-
mentation. We appreciate all the EECS students who
participated in the Chisel bootcamp and proposed
and worked on hardware design projects all of which
pushed the Chisel envelope. We appreciate the work
that James Martin and Alex Williams did in writ-
ing and translating network and memory controllers
and non-blocking caches. Finally, Chisel’s functional
programming and bit-width inference ideas were in-
spired by earlier work on a hardware description lan-
guage called Gel [2] designed in collaboration with
Dany Qumsiyeh and Mark Tobenkin.

14

References

[1] Bachrach, J., Vo, H., Richards, B., Lee, Y., Wa-
terman, A., AviZienis, Wawrzynek, J., Asanovié
Chisel: Constructing Hardware in a Scala Em-
bedded Language. in DAC "12.

[2] Bachrach, J., Qumsiyeh, D., Tobenkin, M. Hard-
ware Scripting in Gel. in Field-Programmable
Custom Computing Machines, 2008. FCCM "08.
16th.

15

