
Chisel Manual

Jonathan Bachrach, Krste Asanović, Huy Vo
EECS Department, UC Berkeley

{jrb|krste|huytbvo}@eecs.berkeley.edu

October 26, 2012

1 Introduction

This document is a manual for Chisel (Constructing
Hardware In a Scala Embedded Language). Chisel
is a hardware construction language embedded in
the high-level programming language Scala. A sep-
arate Chisel tutorial document provides a gentle in-
troduction to using Chisel, and should be read first.
This manual provides a comprehensive overview
and specification of the Chisel language, which is re-
ally only a set of special class definitions, predefined
objects, and usage conventions within Scala. When
you write a Chisel program you are actually writ-
ing a Scala program. In this manual, we presume
that you already understand the basics of Scala. If
you are unfamiliar with Scala, we recommend you
consult one of the excellent Scala books ([3], [2]).

2 Nodes

Any hardware design in Chisel is ultimately rep-
resented by a graph of node objects. User code in
Chisel generate this graph of nodes, which is then
passed to the Chisel backends to be translated into
Verilog or C++ code. Nodes are defined as follows:

class Node {

// name assigned by user or from introspection

var name: String = ""

// incoming graph edges

def inputs: ArrayBuffer[Node]

// outgoing graph edges

def consumers: ArrayBuffer[Node]

// node specific width inference

def inferWidth: Int

// get width immediately inferrable

def getWidth: Int

// get first raw node

def getRawNode: Node

// convert to raw bits

def toBits: Bits

// convert to raw bits

def fromBits(x: Bits): this.type

// return lit value if inferrable else null

def litOf: Lit

// return value of lit if litOf is non null

def litValue(default: BigInt = BigInt(-1)):

BigInt

}

The uppermost levels of the node class hierarchy
are shown in Figure 1. The basic categories are:

Lit – constants or literals,

Op – logical or arithmetic operations,

Updateable – conditionally updated nodes,

Data – typed wires or ports,

Reg – positive-edge-triggered registers, and

Mem – memories.

Node

UpdateableLit Op

Data Reg Mem

Figure 1: Node hierarchy.

3 Lits

Raw literals are represented as Lit nodes defined as
follows:

1

class Lit extends Node {

// original value

val inputVal: BigInt

}

Raw literals contain a collection of bits. Users do
not create raw literals directly, but instead use type
constructors defined in Section 5.

4 Ops

Raw operations are represented as Op nodes defined
as follows:

class Op extends Node {

// op name used during emission

val op: String

}

Ops compute a combinational function of their in-
puts.

5 Types

A Chisel graph representing a hardware design con-
tains raw and type nodes. The Chisel type system
is maintained separately from the underlying Scala
type system, and so type nodes are interspersed
between raw nodes to allow Chisel to check and re-
spond to Chisel types. Chisel type nodes are erased
before the hardware design is translated into C++ or
Verilog. The getRawNode operator defined in the base
Node class, skips type nodes and returns the first
raw node found. Figure 2 shows the built-in Chisel
type hierarchy, with Data as the topmost node.

Data

VecBits

Bool Num

UFix Fix

Bundle

Figure 2: Chisel type hierarchy.

Built-in scalar types include Bits, Bool, Fix, and UFix

and built-in aggregate types Bundle and Vec allow
the user to expand the set of Chisel datatypes with
collections of other types.

Data itself is a node:

abstract class Data extends Node {

override def clone(): this.type =

this.getClass.newInstance.

asInstanceOf[this.type]

// simple conversions

def toFix: Fix

def toUFix: UFix

def toBool: Bool

def toBits: Bits

// flatten out to leaves of tree

def flatten: Array[(String, Data)]

// port direction if leaf

def dir: PortDir

// change dir to OUTPUT

def asOutput: this.type

// change dir to INPUT

def asInput: this.type

// change polarity of dir

def flip: this.type

// assign to input

def :=[T <: Data](t: T)

// bulk assign to input

def <>(t: Data)

}

The Data class has methods for converting between
types and for delegating port methods to its single
input. We will discuss ports in Section 10. Finally,
users can override the clone method in their own
type nodes (e.g., bundles) in order to reflect con-
struction parameters that are necessary for cloning.

Data nodes can be used for four purposes:

• types – UFix(width = 8) – record intermediate
types in the graph specifying at minimum
bitwidth (described in this section),

• wires – UFix(width = 8) – serve as forward dec-
larations of data allowing future conditional
updates (described in Section 6),

• ports – UFix(dir = OUTPUT, width = 8) – are special-
ized wires defining component interfaces, and
additionally specify direction (described in Sec-
tion 10), and

• literals – UFix(1) or UFix(1, 8) – can be con-
structed using type object constructors spec-
ifying their value and optional width.

2

5.1 Bits

In Chisel, a raw collection of bits is represented by
the Bits type defined as follows:

object Bits {

def apply(dir: PortDir = null,

width: Int = -1): Bits

// create literal from BigInt or Int

def apply(value: BigInt, width: Int = -1): Bits

// create literal from String using

// base_char digit+ string format

def apply(value: String, width: Int = -1): Bits

}

class Bits extends Data with Updateable {

// bitwise-not

def unary_~(): Bits

// bitwise-and

def & (b: Bits): Bits

// bitwise-or

def | (b: Bits): Bits

// bitwise-xor

def ^ (b: Bits): Bits

// and-reduction

def andR(): Bool

// or-reduction

def orR(): Bool

// xor-reduction

def xorR(): Bool

// logical NOT

def unary_!(): Bool

// logical AND

def && (b: Bool): Bool

// logical OR

def || (b: Bool): Bool

// equality

def ===(b: Bits): Bool

// inequality

def != (b: Bits): Bool

// logical left shift

def << (b: UFix): Bits

// logical right shift

def >> (b: UFix): Bits

// concatenate

def ## (b: Bits): Bits

// extract single bit, LSB is 0

def apply(x: Int): Bits

// extract bit field from end to start bit pos

def apply(hi: Int, lo: Int): Bits

}

def Cat[T <: Data](elt: T, elts: T*): Bits

Bits has methods for simple bit operations. Note
that ## is binary concatenation, while Cat is an n-
ary concatentation. To avoid colliding with Scala’s
builtin ==, Chisel’s bitwise comparison is named ===.

A field of width n can be created from a single bit
using Fill:

def Fill(n: Int, field: Bits): Bits

and two inputs can be selected using Mux:

def Mux[T <: Data](sel: Bits, cons: T, alt: T): T

Constant or literal values are expressed using
Scala integers or strings passed to constructors for
the types:

Bits(1) // decimal 1-bit lit from Scala Int.

Bits("ha") // hex 4-bit lit from string.

Bits("o12") // octal 4-bit lit from string.

Bits("b1010") // binary 4-bit lit from string.

producing a Lit as shown in the leftmost subfigure
of Figure 3.

Operations return an actual operator node with
a type node combining the input type nodes. See
Figure 3 for successively more complicated exam-
ples.

5.2 Bools

Boolean values are represented as Bools:

object Bool {

def apply(dir: PortDir = null): Bool

// create literal

def apply(value: Boolean): Bool

}

class Bool extends Bits

Bool is equivalent to Bits(width = 1).

5.3 Nums

Num is a type node which defines arithmetic opera-
tions:

class Num extends Bits {

// Negation

def unary_-(): Bits

// Addition

def +(b: Num): Num

// Subtraction

def -(b: Num): Num

// Multiplication

def *(b: Num): Num

// Greater than

def >(b: Num): Bool

// Less than

def <(b: Num): Bool

// Less than or equal

def <=(b: Num): Bool

3

Bits

Lit(1)

Bits

Op(&)

Bits

Lit(1)

Bits

Lit(2)

Bits

Op(|)

Bits Bits

Lit(3)Op(&)

Bits

Lit(1)

Bits

Lit(2)

a = Bits(1) b = a & Bits(2) b | Bits(3)

Figure 3: Chisel Op/Lit graphs constructed with algebraic expressions showing the insertion of type nodes.

// Greater than or equal

def >=(b: Num): Bool

}

Signed and unsigned integers are considered sub-
sets of fixed-point numbers and are represented by
types Fix and UFix respectively:

object Fix {

def apply (dir: PortDir = null,

width: Int = -1): Fix

// create literal

def apply (value: BigInt, width: Int = -1): Fix

def apply (value: String, width: Int = -1): Fix

}

class Fix extends Num

object UFix {

def apply(dir: PortDir = null,

width: Int = -1): UFix

// create literal

def apply(value: BigInt, width: Int = -1): UFix

def apply(value: String, width: Int = -1): UFix

}

class UFix extends Num {

// arithmetic right shift

override def >> (b: UFix): Fix

}

Signed fixed-point numbers, including integers, are
represented using two’s-complement format.

5.4 Bundles

Bundles group together several named fields of po-
tentially different types into a coherent unit, much
like a struct in C:

class Bundle extends Data {

// shallow named bundle elements

def elements: ArrayBuffer[(String, Data)]

}

The name and type of each element in a Bundle
can be obtained with the elements method, and the
flatten method returns the elements at the leaves
for nested aggregates. Users can define new bun-
dles by subclassing Bundle as follows:

class MyFloat extends Bundle {

val sign = Bool()

val exponent = Bits(width = 8)

val significand = Bits(width = 23)

}

Elements are accessed using Scala field access:

val x = new MyFloat()

val xs = x.sign

The names given to a bundle’s elements when
they are emitted by a C++ or Verilog backend are
obtained from their bundle field names, using Scala
introspection.

4

5.5 Vecs

Vecs create an indexable vector of elements:

object Vec {

def apply[T <: Data](n: Int)(type: => T): Vec[T]

def apply[T <: Data](elts: Seq[T])(type: => T):

Vec[T]

def apply[T <: Data](elts: T*)(type: => T):

Vec[T]

}

class Vec[T <: Data](n: Int, val type: () => T)

extends Data {

def apply(idx: UFix): T

def apply(idx: Int): T

}

with n elements of type defined with the gen thunk.
Users can access elements statically with an Int in-
dex or dynamically using a UFix index, where dy-
namic access creates a virtual type node (represent-
ing a read “port”) that records the read using the
given address. In either case, users can wire to the
result of a read as follows:

v(a) := d

Read-only memories can be expressed as Vecs of
literals:

val rom = Vec(UFix(3), UFix(7), UFix(4), UFix(0))

{ UFix(width=3) }

val dout = rom(addr)

5.6 Bit Width Inference

Users are required to set bit widths of ports and
registers, but otherwise, bit widths on nodes are
automatically inferred unless set manually by
the user (using Extract or Cat). The bit-width
inference engine starts from the graph’s input
ports and calculates node output bit widths from
their respective input bit widths according to the
following set of rules:

operation bit width
z = x + y wz = max(wx, wy)

z = x - y wz = max(wx, wy)

z = x & y wz = max(wx, wy)

z = Mux(c, x, y) wz = max(wx, wy)

z = w * y wz = wx + wy

z = x << n wz = wx + maxNum(n)

z = x >> n wz = wx - minNum(n)

z = Cat(x, y) wz = wx + wy

z = Fill(n, x) wz = wx * maxNum(n)

where for instance wz is the bit width of wire z, and
the & rule applies to all bitwise logical operations.

The bit-width inference process continues un-
til no bit width changes. Except for right shifts
by known constant amounts, the bit-width infer-
ence rules specify output bit widths that are never
smaller than the input bit widths, and thus, output
bit widths either grow or stay the same. Further-
more, the width of a register must be specified by
the user either explicitly or from the bitwidth of
the reset value. From these two requirements, we
can show that the bit-width inference process will
converge to a fixpoint.

Shouldn’t & return bitwidth that is min() of inputs?

6 Updateables

When describing the operation of wire and state
nodes, it is often useful to give the specification as
a series of conditional updates to the output value
and to spread out these updates across several sep-
arate statements. For example, the output of a Data
node can be referenced immediately, but its input
can be set later. Updateable represents a condition-
ally updateable node, which accumulates accesses
to the node and which can later generate muxes to
combine these accesses in the circuit.

abstract class Updateable extends Node {

// conditional reads

def reads: Queue[(Bool, UFix)]

// conditional writes

def writes: Queue[(Bool, UFix, Node)]

// gen mux integrating all conditional writes

def genMuxes(default: Node)

override def := (x: Node): this.type

}

Chisel provides conditional update rules in the
form of the when construct to support this style of
sequential logic description:

object when {

def apply(cond: Bool)(block: => Unit): when

}

class when (prevCond: Bool) {

def elsewhen (cond: Bool)(block: => Unit): when

def otherwise (block: => Unit): Unit

}

when manipulates a global condition stack with dy-
namic scope. Therefore, when creates a new condi-
tion that is in force across function calls. For exam-
ple:

def updateWhen (c: Bool, d: Data) =

when (c) { r := d }

5

when (a) {

updateWhen(b, x)

}

is the same as:

when (a) {

when (b) { r := x }

}

Chisel provides some syntactic sugar for other
common forms of conditional updates:

def unless(c: Bool)(block: => Unit) =

when (!c) { block)

and

def otherwise(block: => Unit) =

when (Bool(true)) { block }

We introduce the switch statement for conditional
updates involving a series of comparisons against a
common key:

def switch(c: Bits)(block: => Unit): Unit

def is(v: Bits)(block: => Unit)

7 Forward Declarations

Purely combinational circuits are not allowed to
have cycles between nodes, and Chisel will report
an error if such a cycle is detected. Because they
do not have cycles, legal combinational circuits can
always be constructed in a feed-forward manner,
by adding new nodes whose inputs are derived
from nodes that have already been defined. Sequen-
tial circuits naturally have feedback between nodes,
and so it is sometimes necessary to reference an
output wire before the producing node has been de-
fined. Because Scala evaluates program statements
sequentially, we have allowed data nodes to serve
as a wire providing a declaration of a node that can
be used immediately, but whose input will be set
later. For example, in a simple CPU, we need to
define the pcPlus4 and brTarget wires so they can
be referenced before definition:

val pcPlus4 = UFix()

val brTarget = UFix()

val pcNext = Mux(pcSel, brTarget, pcPlus4)

val pcReg = Reg(pcNext)

pcPlus4 := pcReg + UFix(4)

...

brTarget := addOut

The wiring operator := is used to wire up the con-
nection after pcReg and addOut are defined. After
all assignments are made and the circuit is being
elaborated, it is an error if a forward declaration is
unassigned.

8 Regs

The simplest form of state element supported by
Chisel is a positive-edge-triggered register defined
as follows:

object Reg {

def apply[T <: Data]

(data: T, resetVal: T = null): T

def apply[T <: Data] (resetVal: T): T

def apply[T <: Data] ()(type: => T): T

}

class Reg extends Updateable

where it can be constructed as follows:

val r1 = Reg(io.in)

val r2 = Reg(resetVal = UFix(1, 8))

val r3 = Reg(data = io.in, resetVal = UFix(1))

val r4 = Reg(){ UFix(width = 8) }

where resetVal is the value a reg takes on when
implicit reset is Bool(true).

9 Mems

Chisel supports random-access memories via the
Mem construct. Writes to Mems are positive-edge-
triggered and reads are either combinational or
positive-edge-triggered.

object Mem {

def apply[T <: Data](depth: Int,

seqRead: Boolean = false)

(type: => T): Mem

}

class Mem[T <: Data](depth: Int,

seqRead: Boolean = false,

type: () => T)

extends Updateable {

def apply(idx: UFix): T

}

Ports into Mems are created by applying a UFix in-
dex. A 32-entry register file with one write port and
two combinational read ports might be expressed
as follows:

val rf = Mem(32) { UFix(width = 64) }

6

when (wen) { rf(waddr) := wdata }

val dout1 = rf(waddr1)

val dout2 = rf(waddr2)

If the optional parameter seqRead is set, Chisel
will attempt to infer sequential read ports when a
Reg is assigned the output of a Mem. A one-read,
one-write SRAM might be described as follows:

val ram1r1w =

Mem(1024, seqRead = true) { Bits(width = 32) }

val dout = Reg() { Bits() }

when (wen) { ram1r1w(waddr) := wdata }

when (ren) { dout := ram1r1w(raddr) }

Single-ported SRAMs can be inferred when the
read and write conditions are mutually exclusive in
the same when chain:

val ram1p =

Mem(1024, seqRead = true) { Bits(width = 32) }

val dout = Reg() { Bits() }

when (wen) { ram1p(waddr) := wdata }

.elsewhen (ren) { dout := ram1p(raddr) }

If the same Mem address is both written and
sequentially read on the same clock edge, or if a
sequential read enable is cleared, then the read data
is implementation-defined.

Mem also supports write masks for subword
writes. A given bit is written if the corresponding
mask bit is set.

val ram = Mem(256) { Bits(width = 32) }

when (wen) { ram.write(waddr, wdata, wmask) }

10 Ports

Ports are Data derived nodes used as interfaces to
hardware components. A port is a directional ver-
sion of a primitive Data object. Port directions are
defined as follows:

trait PortDir

object INPUT extends PortDir

object OUTPUT extends PortDir

Aggregate ports can be recursively constructed us-
ing either a vec or bundle with instances of Ports as
leaves.

11 Components

In Chisel, components are very similar to modules in
Verilog, defining a hierarchical structure in the gen-

erated circuit. The hierarchical component names-
pace is accessible in downstream tools to aid in de-
bugging and physical layout. A user-defined com-
ponent is defined as a class which:

• inherits from Component,

• contains an interface Bundle stored in a field
named io, and

• wires together subcircuits in its constructor.

Users write their own components by subclass-
ing Component which is defined as follows:

abstract class Component {

val io: Bundle

var name: String = ""

def compileV: Unit

def compileC: Unit

}

and defining their own io field. For example, to de-
fine a two input mux, we would define a component
as follows:

class Mux2 extends Component {

val io = new Bundle{

val sel = Bits(INPUT, 1)

val in0 = Bits(INPUT, 1)

val in1 = Bits(INPUT, 1)

val out = Bits(OUTPUT, 1)

}

io.out := (io.sel & io.in1) | (~io.sel & io.in0)

}

The := assignment operator, used in the body of a
component definition, is a special operator in Chisel
that wires the input of left-hand side to the output
of the right-hand side. It is typically used to connect
an output port to its definition.

The <> operator bulk connects interfaces of op-
posite gender between sibling components or inter-
faces of same gender between parent/child compo-
nents. Bulk connections connect leaf ports using
pathname matching. Connections are only made
if one of the ports is non-null, allowing users to
repeatedly bulk-connect partially filled interfaces.
After all connections are made and the circuit is
being elaborated, Chisel warns users if ports have
other than exactly one connection to them.

The names given to the nodes and subcompo-
nents stored in a component when they are emitted
by a C++ or Verilog backend are obtained from their
component field names, using Scala introspection.

7

Chisel DUT
inputs

outputs

Figure 4: DUT run using a Tester object in Scala
with stdin and stdout connected

12 BlackBox

Black boxes allow users to define interfaces to cir-
cuits defined outside of Chisel. The user defines:

• a component as a subclass of BlackBox and

• an io field with the interface.

For example, one could define a simple ROM black-
box as:

class RomIo extends Bundle {

val isVal = Bool(INPUT)

val raddr = UFix(INPUT, 32)

val rdata = Bits(OUTPUT, 32)

}

class Rom extends BlackBox {

val io = new RomIo()

}

13 Main and Testing

In order to construct a circuit, the user calls
chiselMain from their top level main function:

object chiselMain {

def apply[T <: Component]

(args: Array[String], comp: () => T): T

}

which when run creates C++ files named compo-
nent_name.cpp and component_name.h in the directory
specified with -targetDir dir_name argument.

Testing is a crucial part of circuit design, and
thus in Chisel we provide a mechanism for testing
circuits by providing test vectors within Scala using
subclasses of the Tester class:

class Tester[T <: Component]

(val c: T, val testNodes: Array[Node])

which binds a tester to a component, and specifies
the nodes to test, and finally allows users to write a
defTests function. The definition for defTests is:

def defTests(body: => Boolean)

where testNodes are the graph nodes that will be
input to and output from the DUT, and where users
write calls to step in the body. Users connect tester
instances to components using:

object chiselMainTest {

def apply[T <: Component]

(args: Array[String], comp: () => T)(

tester: T => Tester[T]): T

}

When -test is given as an argument to chiselMain, a
tester instance runs the Design Under Test (DUT) in
a separate process with stdin and stdout connected
so that inputs can be sent to the DUT and outputs
can received from the DUT as shown in Figure 4.

def step(vars: HashMap[Node, Node]): Boolean

where vars is a mapping of test nodes to literals,
with assignments to input nodes being sent to the
DUT and assignments to non-input nodes being in-
terpreted as expected values. test first sends inputs
specifed in vars, steps the DUT and then either com-
pares expected values from vars or sets vars for test
nodes without entries in vars. The following is an
example for defining tests for Mux2:

class Mux2Tests(c: Mux2)

extends Tester(c, Array(c.io)) {

defTests {

var allGood = true

val n = pow(2, 3).toInt

val vars = new HashMap[Node, Node]()

for (s <- 0 until 2) {

for (i0 <- 0 until 2) {

for (i1 <- 0 until 2) {

vars(c.io.sel) = Bits(s)

vars(c.io.in1) = Bits(i1)

vars(c.io.in0) = Bits(i0)

vars(c.io.out) = Bits(if (s == 1) i1 else

i0)

allGood &&= step(vars)

} } }

allGood

}

}

and the following shows how it is invoked:

chiselMainTest(args + "--test", () => new Mux2()){

c => new Mux2Tests(c)

}

8

Finally, command arguments for chiselMain* are
as follows:

-targetDir target pathname prefix
-genHarness generate harness file for C++
-debug put all wires in C++ class file
-compile compiles generated C++
-test runs tests using C++ app
--backend v generate verilog
--backend c generate C++ (default)
-vcd enable vcd dumping

14 C++ Emulator

The C++ emulator is based on a fast multiword
library using C++ templates. A single word is de-
fined by val_t as follows:

typedef uint64_t val_t;

typedef int64_t sval_t;

typedef uint32_t half_val_t;

and multiwords are defined by dat_t as follows:

template <int w>

class dat_t {

public:

const static int n_words;

inline int width (void);

inline int n_words_of (void);

inline bool to_bool (void);

inline val_t lo_word (void);

inline unsigned long to_ulong (void);

std::string to_str ();

static dat_t<w> rand();

dat_t<w> ();

template <int sw>

dat_t<w> (const dat_t<sw>& src);

dat_t<w> (const dat_t<w>& src);

dat_t<w> (val_t val);

template <int sw>

dat_t<w> mask(dat_t<sw> fill, int n);

template <int dw>

dat_t<dw> mask(int n);

template <int n>

dat_t<n> mask(void);

dat_t<w> operator + (dat_t<w> o);

dat_t<w> operator - (dat_t<w> o);

dat_t<w> operator - ();

dat_t<w+w> operator * (dat_t<w> o);

dat_t<w+w> fix_times_fix(dat_t<w> o);

dat_t<w+w> ufix_times_fix(dat_t<w> o);

dat_t<w+w> fix_times_ufix(dat_t<w> o);

dat_t<1> operator < (dat_t<w> o);

dat_t<1> operator > (dat_t<w> o);

dat_t<1> operator >= (dat_t<w> o);

dat_t<1> operator <= (dat_t<w> o);

dat_t<1> gt (dat_t<w> o);

dat_t<1> gte (dat_t<w> o);

dat_t<1> lt (dat_t<w> o);

dat_t<1> lte (dat_t<w> o);

dat_t<w> operator ^ (dat_t<w> o);

dat_t<w> operator & (dat_t<w> o);

dat_t<w> operator | (dat_t<w> o);

dat_t<w> operator ~ (void);

dat_t<1> operator ! (void);

dat_t<1> operator && (dat_t<1> o);

dat_t<1> operator || (dat_t<1> o);

dat_t<1> operator == (dat_t<w> o);

dat_t<1> operator == (datz_t<w> o);

dat_t<1> operator != (dat_t<w> o);

dat_t<w> operator << (int amount);

dat_t<w> operator << (dat_t<w> o);

dat_t<w> operator >> (int amount);

dat_t<w> operator >> (dat_t<w> o);

dat_t<w> rsha (dat_t<w> o);

dat_t<w>& operator = (dat_t<w> o);

dat_t<w> fill_bit(val_t bit);

dat_t<w> fill_byte

(val_t byte, int nb, int n);

template <int dw, int n>

dat_t<dw> fill(void);

template <int dw, int nw>

dat_t<dw> fill(dat_t<nw> n);

template <int dw>

dat_t<dw> extract();

template <int dw>

dat_t<dw> extract(val_t e, val_t s);

template <int dw, int iwe, int iws>

dat_t<dw> extract

(dat_t<iwe> e, dat_t<iws> s);

template <int sw>

dat_t<w> inject

(dat_t<sw> src, val_t e, val_t s);

template <int sw, int iwe, int iws>

dat_t<w> inject

(dat_t<sw> src,

dat_t<iwe> e, dat_t<iws> s);

template <int dw>

dat_t<dw> log2();

dat_t<1> bit(val_t b);

val_t msb();

template <int iw>

dat_t<1> bit(dat_t<iw> b)

}

template <int w, int sw>

dat_t<w> DAT(dat_t<sw> dat);

template <int w>

dat_t<w> LIT(val_t value);

template <int w> dat_t<w>

mux (dat_t<1> t, dat_t<w> c, dat_t<w> a)

where w is the bit width parameter.

The Chisel compiler compiles top level compo-
nents into a single flattened mod_t class that can be

9

created and executed:

class mod_t {

public:

// initialize component

virtual void init (void) { };

// compute all combinational logic

virtual void clock_lo (dat_t<1> reset) { };

// commit state updates

virtual void clock_hi (dat_t<1> reset) { };

// print printer specd node values to stdout

virtual void print (FILE* f) { };

// scan scanner specd node values from stdin

virtual bool scan (FILE* f) { return true; };

// dump vcd file

virtual void dump (FILE* f, int t) { };

};

Either the Chisel compiler can create a harness
or the user can write a harness themselves. The
following is an example of a harness for a CPU
component:

#include "cpu.h"

int main (int argc, char* argv[]) {

cpu_t* c = new cpu_t();

int lim = (argc > 1) ? atoi(argv[1]) : -1;

c->init();

for (int t = 0; lim < 0 || t < lim; t++) {

dat_t<1> reset = LIT<1>(t == 0);

if (!c->scan(stdin)) break;

c->clock_lo(reset);

c->clock_hi(reset);

c->print(stdout);

}

}

15 Verilog

Chisel generates Verilog when the -v argument is
passed into chiselMain. For example, from SBT, the
following

run --v

would produce a single Verilog file named component-
name.v in the target directory. The file will con-
tain one module per component defined as sub-
components of the top level component created in
chiselMain. Modules with the same interface and
body are cached and reused.

16 Extra Stuff

def ListLookup[T <: Bits]

(addr: Bits, default: List[T],

mapping: Array[(Bits, List[T])]): List[T]

def Lookup[T <: Data]

(addr: Bits, default: T,

mapping: Seq[(Bits, T)]): T

// n-way multiplexor

def MuxCase[T <: Data]

(default: T, mapping: Seq[(Bool, T)]): T

// n-way indexed multiplexer:

def MuxLookup[S <: Bits, T <: Data]

(key: S, default: T, mapping: Seq[(S, T)]): T

// create n enum values of given type

def Enum[T <: Bits]

(n: Int)(type: => T): List[T]

17 Standard Library

17.1 Math

// Returns the log base 2 of the input

// Scala Integer rounded up

def log2Up(in: Int): Int

// Returns the log base 2 of the input

// Scala Integer rounded down

def log2Down(in: Int): Int

// Returns true if the input Scala Integer

// is a power of 2

def isPow2(in: Int): Boolean

// linear feedback shift register

def LFSR16(increment: Bool = Bool(true)): Bits

17.2 Sequential

// Returns the n-cycle delayed version

// of the input signal

def ShiftRegister[T <: Data](n: Int, in: T): T

def Counter(cond: Bool, n: Int) = {

val c = Reg(resetVal = UFix(0, log2Up(n)))

val wrap = c === UFix(n-1)

when (cond) {

c := Mux(Bool(!isPow2(n)) && wrap, UFix(0), c

+ UFix(1))

}

(c, wrap && cond)

}

17.3 Bits

10

// Returns the number of bits set in the

// input signal. Causes an exception if

// the input is wider than 32 bits.

def PopCount(in: Bits): Bits

// Returns the reverse the input signal

def Reverse(in: Bits): Bits

// returns the one hot encoding of

// the input UFix

def UFixToOH(in: UFix, width: Int): Bits

// does the inverse of UFixToOH

def OHToUFix(in: Bits): UFix

def OHToUFix(in: Seq[Bool]): UFix

// Builds a Mux tree out of the input

// signal vector using a one hot encoded

// select signal. Returns the output of

// the Mux tree

def Mux1H[T <: Data](sel: Bits, in: Vec[T]): T

def Mux1H[T <: Data](sel: Vec[Bool], in: Vec[T]):

T

// Builds a Mux tree under the

// assumption that multiple

// select signals can be enabled.

// Priority is given to the first

// select signal. Returns the output

// of the Mux tree.

def PriorityMux[T <: Data](sel: Bits, in:

Seq[T]): T

def PriorityMux[T <: Data](sel: Seq[Bits], in:

Seq[T]): T

// Returns the bit position of the

// trailing 1 in the input vector with

// the assumption that multiple bits of

// the input bit vector can be set

def PriorityEncoder(in: Bits): UFix

def PriorityEncoder(in: Seq[Bool]): UFix

// Returns the bit position of the

// trailing 1 in the input vector with

// the assumption that only one bit in

// the input vector can be set

def PriorityEncoderOH(in: Bits): UFix

def PriorityEncoderOH(in: Seq[Boo]): UFix

17.4 Decoupled

// Adds a ready-valid handshaking

// protocol to any interface. The

// standard used is that the

// consumer uses the flipped

// interface.

class FIFOIO[+T <: Data]()(data: => T)

extends Bundle {

val ready = Bool(INPUT)

val valid = Bool(OUTPUT)

val bits = data.asOutput

}

// Adds a valid protocol to any

// interface. The standard used is

// that the consumer uses the

// fliped interface.

class PipeIO[+T <: Data]()(data: => T)

extends Bundle {

val valid = Bool(OUTPUT)

val bits = data.asOutput

}

// Hardware module that is used to

// sequence n producers into 1 consumer.

// Priority is given to lower

// producer

// Example usage:

// val arb = new Arbiter(2){ Bits() }

// arb.io.in(0) <> producer0.io.out

// arb.io.in(1) <> producer1.io.out

// consumer.io.in <> arb.io.out

class Arbiter[T <: Data](n: Int)(data: => T)

extends Component

// Hardware module that is used to

// sequence n producers into 1 consumer.

// Producers are chosen in round robin

// order

// Example usage:

// val arb = new RRArbiter(2){ Bits() }

// arb.io.in(0) <> producer0.io.out

// arb.io.in(1) <> producer1.io.out

// consumer.io.in <> arb.io.out

class RRArbiter[T <: Data](n: Int)(data: => T)

extends Component

// Generic hardware queue. Required

// parameter entries controls the

// depth of the queues. The width of

// the queue is determined from the

// inputs.

// Example usage:

// val q = new Queue(16){ Bits() }

// q.io.enq <> producer.io.out

// consumer.io.in <> q.io.deq

class Queue[T <: Data]

(entries: Int,

pipe: Boolean = false,

flow: Boolean = false

flushable: Boolean = false)

(data: => T) extends Component

// A hardware module that delays data

// coming down the pipeline by the

// number of cycles set by the

// latency parameter. Functionality

11

// is similar to ShiftRegister but

// this exposes a Pipe interface.

// Example usage:

// val pipe = new Pipe(){ Bits() }

// pipe.io.enq <> produce.io.out

// consumer.io.in <> pipe.io.deq

class Pipe[T <: Data]

(latency: Int = 1)

(data: => T) extends Component

References

[1] Bachrach, J., Vo, H., Richards, B., Lee, Y., Water-
man, A., Avižienis, Wawrzynek, J., Asanović
Chisel: Constructing Hardware in a Scala Em-
bedded Language in DAC ’12.

[2] Odersky, M., Spoon, L., Venners, B. Program-
ming in Scala by Artima.

[3] Payne, A., Wampler, D. Programming Scala by
O’Reilly books.

12

